Robust GPS/Galileo/GLONASS Data Fusion Using Extended Kalman Filter

Tan Truong-Ngoc, A. Khenchaf, F. Comblet, Pierre Franck, Jean-Marc Champeyroux, O. Reichert
{"title":"Robust GPS/Galileo/GLONASS Data Fusion Using Extended Kalman Filter","authors":"Tan Truong-Ngoc, A. Khenchaf, F. Comblet, Pierre Franck, Jean-Marc Champeyroux, O. Reichert","doi":"10.1109/ATSIP49331.2020.9231565","DOIUrl":null,"url":null,"abstract":"This paper presents data fusion from multiple Global Navigation Satellite System (GNSS) constellations. GNSS brings more signals and more satellites to improve the accuracy of user’s position. However, multiple failures in satellite’s signals sometimes negatively impact the determination of the user’s position and should be considered. For this purpose, the present paper provides robust Extended Kalman Filter (robust-EKF) to eliminate the outliers. The algorithms are tested by using GPS, Galileo and GLONASS data corresponding on data from base station GRAC in Grasse, France. Applying the robust-EKF method as well as the robust combination of GPS, Galileo, and GLONASS data improves the position accuracy by about 30.0%, 20.7%, and 90% compared to the use of GPS data only, Galileo data only, and GLONASS data only, respectively, and by about 67% compared to the nonrobust combination of GPS, Galileo, and GLONASS data.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents data fusion from multiple Global Navigation Satellite System (GNSS) constellations. GNSS brings more signals and more satellites to improve the accuracy of user’s position. However, multiple failures in satellite’s signals sometimes negatively impact the determination of the user’s position and should be considered. For this purpose, the present paper provides robust Extended Kalman Filter (robust-EKF) to eliminate the outliers. The algorithms are tested by using GPS, Galileo and GLONASS data corresponding on data from base station GRAC in Grasse, France. Applying the robust-EKF method as well as the robust combination of GPS, Galileo, and GLONASS data improves the position accuracy by about 30.0%, 20.7%, and 90% compared to the use of GPS data only, Galileo data only, and GLONASS data only, respectively, and by about 67% compared to the nonrobust combination of GPS, Galileo, and GLONASS data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展卡尔曼滤波的GPS/Galileo/GLONASS数据融合
本文研究了来自全球导航卫星系统(GNSS)多个星座的数据融合。GNSS带来了更多的信号和更多的卫星,提高了用户的定位精度。然而,卫星信号的多次故障有时会对用户位置的确定产生负面影响,应予以考虑。为此,本文提出了鲁棒扩展卡尔曼滤波(robust- ekf)来消除异常值。利用法国格拉斯GRAC基站的GPS、Galileo和GLONASS数据对算法进行了测试。采用鲁棒ekf方法以及GPS、Galileo和GLONASS数据的鲁棒组合,与仅使用GPS数据、仅使用Galileo数据和仅使用GLONASS数据相比,定位精度分别提高了约30.0%、20.7%和90%,与GPS、Galileo和GLONASS数据的非鲁棒组合相比,定位精度提高了约67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1