{"title":"Ionospheric Monitoring and Modeling Applicable to Coastal and Marine Environments","authors":"L. Cander, B. Zolesi","doi":"10.5772/intechopen.90467","DOIUrl":null,"url":null,"abstract":"Ionospheric monitoring and modeling in costal and marine environment is reviewed and characterized in terms of state of art, global, regional, and local issues across different domains of solar-terrestrial conditions for practical applications. Their effects on critical technological systems are either controlled by the Earth ’ s ionosphere, as in telecommunications and information systems, or simply influenced by its variability, as in trans-ionospheric radio communication, and navigation systems. The evolution of long-distance high-frequency (HF) communications and then still the actuality of HF radio links especially for the coast environment, maritime services, and aeronautical applications, for control and emergency services, for communications equally important in case of great islands and remote areas, for economic reasoning and easy management, and for efficient backup in case of cyber threats are discussed. Some preferred methods for a proper assessment of HF networks have been identified, and examples of existing long-term prediction and near real-time nowcasting in ionospheric space weather modeling to be used, particularly in the Mediterranean area, are presented along with contemporary references.","PeriodicalId":377206,"journal":{"name":"Coastal and Marine Environments - Physical Processes and Numerical Modelling","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal and Marine Environments - Physical Processes and Numerical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ionospheric monitoring and modeling in costal and marine environment is reviewed and characterized in terms of state of art, global, regional, and local issues across different domains of solar-terrestrial conditions for practical applications. Their effects on critical technological systems are either controlled by the Earth ’ s ionosphere, as in telecommunications and information systems, or simply influenced by its variability, as in trans-ionospheric radio communication, and navigation systems. The evolution of long-distance high-frequency (HF) communications and then still the actuality of HF radio links especially for the coast environment, maritime services, and aeronautical applications, for control and emergency services, for communications equally important in case of great islands and remote areas, for economic reasoning and easy management, and for efficient backup in case of cyber threats are discussed. Some preferred methods for a proper assessment of HF networks have been identified, and examples of existing long-term prediction and near real-time nowcasting in ionospheric space weather modeling to be used, particularly in the Mediterranean area, are presented along with contemporary references.