A Survey of Graph Neural Networks for Electronic Design Automation

Daniela Sánchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, R. Wille, W. Ecker
{"title":"A Survey of Graph Neural Networks for Electronic Design Automation","authors":"Daniela Sánchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, R. Wille, W. Ecker","doi":"10.1109/MLCAD52597.2021.9531070","DOIUrl":null,"url":null,"abstract":"Driven by Moore’s law, the chip design complexity is steadily increasing. Electronic Design Automation (EDA) has been able to cope with the challenging very large-scale integration process, assuring scalability, reliability, and proper time-to-market. However, EDA approaches are time and resource-demanding, and they often do not guarantee optimal solutions. To alleviate these, Machine Learning (ML) has been incorporated into many stages of the design flow, such as in placement and routing. Many solutions employ Euclidean data and ML techniques without considering that many EDA objects are represented naturally as graphs. The trending Graph Neural Networks are an opportunity to solve EDA problems directly using graph structures for circuits, intermediate RTLs, and netlists. In this paper, we present a comprehensive review of the existing works linking the EDA flow for chip design and Graph Neural Networks.","PeriodicalId":210763,"journal":{"name":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLCAD52597.2021.9531070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Driven by Moore’s law, the chip design complexity is steadily increasing. Electronic Design Automation (EDA) has been able to cope with the challenging very large-scale integration process, assuring scalability, reliability, and proper time-to-market. However, EDA approaches are time and resource-demanding, and they often do not guarantee optimal solutions. To alleviate these, Machine Learning (ML) has been incorporated into many stages of the design flow, such as in placement and routing. Many solutions employ Euclidean data and ML techniques without considering that many EDA objects are represented naturally as graphs. The trending Graph Neural Networks are an opportunity to solve EDA problems directly using graph structures for circuits, intermediate RTLs, and netlists. In this paper, we present a comprehensive review of the existing works linking the EDA flow for chip design and Graph Neural Networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图神经网络在电子设计自动化中的应用综述
在摩尔定律的驱动下,芯片设计的复杂性正在稳步增加。电子设计自动化(EDA)已经能够应对具有挑战性的大规模集成过程,确保可扩展性、可靠性和适当的上市时间。然而,EDA方法需要时间和资源,而且它们通常不能保证最佳解决方案。为了缓解这些问题,机器学习(ML)已被纳入设计流程的许多阶段,例如放置和路由。许多解决方案采用欧几里德数据和ML技术,而没有考虑到许多EDA对象自然地表示为图。趋势图神经网络是一个直接使用电路、中间rtl和网络列表的图结构来解决EDA问题的机会。在本文中,我们全面回顾了将芯片设计的EDA流程与图神经网络联系起来的现有工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT: An Adaptive Machine Learning Framework with Application to Lithography Hotspot Detection Approximate Divider Design Based on Counting-Based Stochastic Computing Division A Circuit Attention Network-Based Actor-Critic Learning Approach to Robust Analog Transistor Sizing Massive Figure Extraction and Classification in Electronic Component Datasheets for Accelerating PCB Design Preparation Fast Electrostatic Analysis For VLSI Aging based on Generative Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1