{"title":"Surface modification of biomaterial by laser irradiation method","authors":"K. Kumazaki, M. Kuwata, T. Matsutani, T. Nakayama","doi":"10.1109/CLEOPR.1999.814785","DOIUrl":null,"url":null,"abstract":"Alumina ceramic (Al/sub 2/O/sub 3/) has been used for a hard tissue substitution material, such as for artificial joints and tooth roots, because of its high wear-resistance, high hardness and chemical stability. Al/sub 2/O/sub 3/ is, however, a bioinert material and requires mechanical fabrication by a screw cutter to be embedded in a human body. On the other hand, it is well known that calcium phosphate ceramics are bioactive materials. Since hydroxyapatite ceramics [HAp: Ca/sub 10/(PO/sub 4/)/sub 6/(OH)/sub 3/], especially, consist of an inorganic component in bone and have high biocompatibility, they are used as a bony filler. HAp is, however, inferior in mechanical strength. In the medical field, development of a material with both advantages mentioned above is desired. In this study, a simple method using a discharge-pumped KrF excimer laser is presented for formation of a KAp layer on A1/sub 2/O/sub 3/. The bio-compatibility of the sample formed by this method is confirmed with a simulated body fluid (SBF) containing an apatite-wollastonite glass (A-W glass) and the growing mechanism of the KAp layer is discussed.","PeriodicalId":408728,"journal":{"name":"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)","volume":"51 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOPR.1999.814785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Alumina ceramic (Al/sub 2/O/sub 3/) has been used for a hard tissue substitution material, such as for artificial joints and tooth roots, because of its high wear-resistance, high hardness and chemical stability. Al/sub 2/O/sub 3/ is, however, a bioinert material and requires mechanical fabrication by a screw cutter to be embedded in a human body. On the other hand, it is well known that calcium phosphate ceramics are bioactive materials. Since hydroxyapatite ceramics [HAp: Ca/sub 10/(PO/sub 4/)/sub 6/(OH)/sub 3/], especially, consist of an inorganic component in bone and have high biocompatibility, they are used as a bony filler. HAp is, however, inferior in mechanical strength. In the medical field, development of a material with both advantages mentioned above is desired. In this study, a simple method using a discharge-pumped KrF excimer laser is presented for formation of a KAp layer on A1/sub 2/O/sub 3/. The bio-compatibility of the sample formed by this method is confirmed with a simulated body fluid (SBF) containing an apatite-wollastonite glass (A-W glass) and the growing mechanism of the KAp layer is discussed.