Lossless Compression of Maps, Charts, and Graphs via Color Separation

S. alZahir, Arber Borici
{"title":"Lossless Compression of Maps, Charts, and Graphs via Color Separation","authors":"S. alZahir, Arber Borici","doi":"10.1109/DCC.2010.102","DOIUrl":null,"url":null,"abstract":"In this paper, we present a fast lossless compression scheme for digital map images, and chart and graph images in the raster image format. This work contains two main contributions. The first is centered around the creation of a codebook that is based on symbol entropy. The second contribution is the introduction of a new row-column reduction coding algorithm. This scheme determines the number of different colors in the given image and creates a separate bi-level data layer for each color i.e., one for the color and the second is for the background. Then, the bi-level layers are individually compressed using the proposed method, which is based on symbol-entropy in conjunction with our row-column reduction coding algorithm. Our experimental results show that our lossless compression scheme scored a compression equal to 0.035 bpp on average for map images and 0.03 bpp on average for charts and graphs. These results are better than most reported results in the literature. Moreover, our scheme is simple and fast.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a fast lossless compression scheme for digital map images, and chart and graph images in the raster image format. This work contains two main contributions. The first is centered around the creation of a codebook that is based on symbol entropy. The second contribution is the introduction of a new row-column reduction coding algorithm. This scheme determines the number of different colors in the given image and creates a separate bi-level data layer for each color i.e., one for the color and the second is for the background. Then, the bi-level layers are individually compressed using the proposed method, which is based on symbol-entropy in conjunction with our row-column reduction coding algorithm. Our experimental results show that our lossless compression scheme scored a compression equal to 0.035 bpp on average for map images and 0.03 bpp on average for charts and graphs. These results are better than most reported results in the literature. Moreover, our scheme is simple and fast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无损压缩地图,图表和图形通过颜色分离
本文提出了一种快速无损压缩数字地图图像和栅格图像格式的图表图像的方案。这项工作有两个主要贡献。第一个是围绕创建一个基于符号熵的码本。第二个贡献是引入了一种新的行-列缩减编码算法。该方案确定给定图像中不同颜色的数量,并为每种颜色创建一个单独的双层数据层,即,一个用于颜色,第二个用于背景。然后,使用基于符号熵和我们的行-列约简编码算法的方法对双层层进行单独压缩。实验结果表明,我们的无损压缩方案对地图图像的平均压缩率为0.035 bpp,对图表和图形的平均压缩率为0.03 bpp。这些结果比文献中大多数报道的结果要好。此外,我们的方案简单,快速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape Recognition Using Vector Quantization Lossless Reduced Cutset Coding of Markov Random Fields Optimized Analog Mappings for Distributed Source-Channel Coding An MCMC Approach to Lossy Compression of Continuous Sources Lossless Compression of Mapped Domain Linear Prediction Residual for ITU-T Recommendation G.711.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1