On the Physical Mechanism of Negative Capacitance Effect in Ferroelectric FET

M. Kobayashi
{"title":"On the Physical Mechanism of Negative Capacitance Effect in Ferroelectric FET","authors":"M. Kobayashi","doi":"10.23919/SISPAD49475.2020.9241628","DOIUrl":null,"url":null,"abstract":"Negative capacitance FET is a promising CMOS technology booster which may break the limit of 60mV/dec in subthreshold swing (SS) without degrading performance. We investigated the physical mechanism of negative capacitance in ferroelectric FET (FeFET) by considering the dynamics of the polarization in ferroelectric gate insulator: transient negative capacitance (TNC). Polarization switching and depolarization effect are essential to cause negative capacitance effect, that is, apparent surface potential amplification in deep subthreshold region with small depletion layer capacitance. Moreover, unique features of reverse DIBL and negative differential resistance (NDR) are also reproduced by the transient negative capacitance theory. Modeling charged defect in FeFET, hysteresis-free sub-60mV/dec SS can be realized. TNC theory is regarded as a comprehensive framework to model subthreshold characteristics of FeFET.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Negative capacitance FET is a promising CMOS technology booster which may break the limit of 60mV/dec in subthreshold swing (SS) without degrading performance. We investigated the physical mechanism of negative capacitance in ferroelectric FET (FeFET) by considering the dynamics of the polarization in ferroelectric gate insulator: transient negative capacitance (TNC). Polarization switching and depolarization effect are essential to cause negative capacitance effect, that is, apparent surface potential amplification in deep subthreshold region with small depletion layer capacitance. Moreover, unique features of reverse DIBL and negative differential resistance (NDR) are also reproduced by the transient negative capacitance theory. Modeling charged defect in FeFET, hysteresis-free sub-60mV/dec SS can be realized. TNC theory is regarded as a comprehensive framework to model subthreshold characteristics of FeFET.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁电场效应管负电容效应的物理机理研究
负电容场效应管是一种很有前途的CMOS技术增压器,它可以在不降低性能的情况下在亚阈值摆幅(SS)中突破60mV/dec的极限。通过考虑铁电栅绝缘子的极化动力学,研究了铁电场效应管(FeFET)中负电容的物理机制:瞬态负电容(TNC)。极化开关和去极化效应是引起负电容效应的关键,即在深亚阈区以小损耗层电容放大表观表面电位。此外,瞬态负电容理论还再现了反向DIBL和负差分电阻(NDR)的独特特性。模拟FeFET中的电荷缺陷,可以实现60mv /dec以下的无磁滞SS。TNC理论被认为是模拟场效应管亚阈值特性的一个综合框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Device Degradation Estimation by Machine Learning of Gate Waveforms Numerical Solution of the Constrained Wigner Equation Nanoscale FET: How To Make Atomistic Simulation Versatile, Predictive, and Fast at 5nm Node and Below Fully Analog ReRAM Neuromorphic Circuit Optimization using DTCO Simulation Framework Analytical Formulae for the Surface Green’s Functions of Graphene and 1T’ MoS2 Nanoribbons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1