{"title":"Model identification of a photovoltaic system for a DC microgrid simulation","authors":"M. Gulin, M. Vašak, T. Pavlovic","doi":"10.1109/EPEPEMC.2014.6980528","DOIUrl":null,"url":null,"abstract":"Residential microgrids are mainly based on renewable energy sources (i.e., mainly on photovoltaic panels), energy storage systems (that enable time-shift between production and consumption), and on power converters representing control points that by proper operation ensure overall system stability and quality of power supply. For optimal techno-economical microgrid operation, i.e. microgrid voltage level control and power flow management, the models of microgrid components involved must be known. In this paper we verify a single-diode five-parameters equivalent electrical model of a photovoltaic array by experiments, and based on the verified model propose a new power production model suitable for microgrid power flow optimization applications. Microgrid components are connected to a common power link via an appropriate power converter in order to ensure components' maximum efficiency and the overall system stability. Simulation of DC/DC power converters on a switching level requires significant computational efforts due to high switching frequencies (10-100 kHz). However, it is shown that dynamical behaviour of a DC/DC power converter in closed control loop can be replaced by a PT2 dynamic element with good approximation accuracy. All equivalent electrical models presented in this paper are implemented in the professional simulation platform for power electronic systems Plexim PLECS.","PeriodicalId":325670,"journal":{"name":"2014 16th International Power Electronics and Motion Control Conference and Exposition","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Power Electronics and Motion Control Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2014.6980528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Residential microgrids are mainly based on renewable energy sources (i.e., mainly on photovoltaic panels), energy storage systems (that enable time-shift between production and consumption), and on power converters representing control points that by proper operation ensure overall system stability and quality of power supply. For optimal techno-economical microgrid operation, i.e. microgrid voltage level control and power flow management, the models of microgrid components involved must be known. In this paper we verify a single-diode five-parameters equivalent electrical model of a photovoltaic array by experiments, and based on the verified model propose a new power production model suitable for microgrid power flow optimization applications. Microgrid components are connected to a common power link via an appropriate power converter in order to ensure components' maximum efficiency and the overall system stability. Simulation of DC/DC power converters on a switching level requires significant computational efforts due to high switching frequencies (10-100 kHz). However, it is shown that dynamical behaviour of a DC/DC power converter in closed control loop can be replaced by a PT2 dynamic element with good approximation accuracy. All equivalent electrical models presented in this paper are implemented in the professional simulation platform for power electronic systems Plexim PLECS.