A co-synthesis methodology for power delivery and data interconnection networks in 3D ICs

N. Kapadia, S. Pasricha
{"title":"A co-synthesis methodology for power delivery and data interconnection networks in 3D ICs","authors":"N. Kapadia, S. Pasricha","doi":"10.1109/ISQED.2013.6523593","DOIUrl":null,"url":null,"abstract":"A stable voltage supply is critical for multiprocessor system-on-chips (MPSoCs) to operate at near-optimal performance levels. The problem of IR drops in a Power Delivery Network (PDN) is very severe in 3D MPSoCs with network-on-chip (NoC) fabrics where the current in the PDN increases proportionally with the number of device layers. At the same time, with the increasing core counts in today's power-hungry MPSoCs, the already hard problem of voltage island-aware Network-on-Chip (NoC) design has become even more challenging. Even though the PDN and NoC design goals are non-overlapping, both the optimizations are interdependent. Unfortunately, designers today seldom consider design of the PDN while synthesizing NoCs. In this work, for the first time, we propose a novel system-level co-synthesis methodology that minimizes 3D NoC energy while meeting performance goals; and simultaneously optimizes the 3D PDN design while satisfying IR-drop constraints. Our experimental results show that the proposed co-synthesis methodology meets IR-drop constraints while minimizing energy consumption for several real-world applications, improving upon results from traditional system-level methodologies that perform PDN design and NoC synthesis separately.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A stable voltage supply is critical for multiprocessor system-on-chips (MPSoCs) to operate at near-optimal performance levels. The problem of IR drops in a Power Delivery Network (PDN) is very severe in 3D MPSoCs with network-on-chip (NoC) fabrics where the current in the PDN increases proportionally with the number of device layers. At the same time, with the increasing core counts in today's power-hungry MPSoCs, the already hard problem of voltage island-aware Network-on-Chip (NoC) design has become even more challenging. Even though the PDN and NoC design goals are non-overlapping, both the optimizations are interdependent. Unfortunately, designers today seldom consider design of the PDN while synthesizing NoCs. In this work, for the first time, we propose a novel system-level co-synthesis methodology that minimizes 3D NoC energy while meeting performance goals; and simultaneously optimizes the 3D PDN design while satisfying IR-drop constraints. Our experimental results show that the proposed co-synthesis methodology meets IR-drop constraints while minimizing energy consumption for several real-world applications, improving upon results from traditional system-level methodologies that perform PDN design and NoC synthesis separately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维集成电路中电力传输和数据互连网络的协同综合方法
稳定的电压供应对于多处理器片上系统(mpsoc)在接近最佳性能水平下工作至关重要。在采用片上网络(NoC)结构的3D mpsoc中,功率传输网络(PDN)中的IR下降问题非常严重,其中PDN中的电流随着器件层数的增加而成比例地增加。与此同时,随着当今耗电的mpsoc中核心数量的增加,电压岛感知片上网络(NoC)设计的难题变得更加具有挑战性。尽管PDN和NoC的设计目标不重叠,但这两种优化是相互依赖的。不幸的是,今天的设计人员在合成noc时很少考虑PDN的设计。在这项工作中,我们首次提出了一种新的系统级协同合成方法,可以在满足性能目标的同时最大限度地减少3D NoC能量;并在满足IR-drop约束的同时优化了3D PDN设计。我们的实验结果表明,所提出的协同合成方法满足ir下降约束,同时最大限度地减少了几种实际应用的能耗,改进了分别执行PDN设计和NoC合成的传统系统级方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1