An adaptive frequency-domain identification of Wiener models by using generalized rational basis functions

Hangmei Rao, Wen Mi
{"title":"An adaptive frequency-domain identification of Wiener models by using generalized rational basis functions","authors":"Hangmei Rao, Wen Mi","doi":"10.1109/YAC.2018.8406388","DOIUrl":null,"url":null,"abstract":"This paper addresses a novel adaptive algorithm method for direct identification Wiener systems by using the rational orthogonal systems. By adopting an adaptive decomposition algorithm for the Hardy space functions, identification of the linear part can be achieved with the sampling input and output data. After that the nonlinear part can be estimated with general least-squares method. Example shows the proposed algorithm is efficient.","PeriodicalId":226586,"journal":{"name":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2018.8406388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses a novel adaptive algorithm method for direct identification Wiener systems by using the rational orthogonal systems. By adopting an adaptive decomposition algorithm for the Hardy space functions, identification of the linear part can be achieved with the sampling input and output data. After that the nonlinear part can be estimated with general least-squares method. Example shows the proposed algorithm is efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义有理基函数的Wiener模型自适应频域辨识
本文提出了一种利用有理正交系统直接识别维纳系统的自适应算法。采用Hardy空间函数的自适应分解算法,利用采样输入输出数据实现线性部分的识别。然后用一般最小二乘法对非线性部分进行估计。实例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A local multi-robot cooperative formation control Data-driven policy learning strategy for nonlinear robust control with unknown perturbation Inverse kinematics of 7-DOF redundant manipulators with arbitrary offsets based on augmented Jacobian On supply demand coordination in vehicle-to-grid — A brief literature review Trajectory tracking control for mobile robots based on second order fast terminal sliding mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1