Development of Isolated Element Method and Analysis of Upper and Lower bound solutions by a New Mixed-Hybrid Variational principle

E. Kazama, A. Kikuchi
{"title":"Development of Isolated Element Method and Analysis of Upper and Lower bound solutions by a New Mixed-Hybrid Variational principle","authors":"E. Kazama, A. Kikuchi","doi":"10.23967/wccm-apcom.2022.042","DOIUrl":null,"url":null,"abstract":". A new discretization analysis method named the isolated element method, that differ from conventional FEM, for solid mechanical problems is proposed. An object to be analyzed is divided into the elements that are separated from each other. A set of displacement functions providing arbitrary number of degrees of freedom is used for each isolated element which expresses the translation and rotation of a rigid body. The extended principle of minimum potential energy is applied to satisfy the continuity of the displacement of isolated elements adjoining to each other. Any node or spring, penalty functions and Lagrange multipliers are not used in this method. The displacement functions of the power series are used to describe the mechanical state of the isolated element and finally, the coefficients of series are determined by a variational principle derived from the extended principle of minimum potential energy. Furthermore, a new mixed and hybrid variational principle which is composed from the potential and the complemental energy functional is proposed. The pair of these energy are constrained by a formula. Using this new principle, in which stress and displacement can be used as independent variables, the stress and displacement are computed at the same time. Besides, upper and lower bounds solutions are analyzed using the new principle and the isolated element method. Some computed examples of the plane stress problems are presented. We show the good convergency of the numerical results, and also present the upper and lower bound results of stress and displacement by the new mixed and hybrid variational principle using the isolated element method","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. A new discretization analysis method named the isolated element method, that differ from conventional FEM, for solid mechanical problems is proposed. An object to be analyzed is divided into the elements that are separated from each other. A set of displacement functions providing arbitrary number of degrees of freedom is used for each isolated element which expresses the translation and rotation of a rigid body. The extended principle of minimum potential energy is applied to satisfy the continuity of the displacement of isolated elements adjoining to each other. Any node or spring, penalty functions and Lagrange multipliers are not used in this method. The displacement functions of the power series are used to describe the mechanical state of the isolated element and finally, the coefficients of series are determined by a variational principle derived from the extended principle of minimum potential energy. Furthermore, a new mixed and hybrid variational principle which is composed from the potential and the complemental energy functional is proposed. The pair of these energy are constrained by a formula. Using this new principle, in which stress and displacement can be used as independent variables, the stress and displacement are computed at the same time. Besides, upper and lower bounds solutions are analyzed using the new principle and the isolated element method. Some computed examples of the plane stress problems are presented. We show the good convergency of the numerical results, and also present the upper and lower bound results of stress and displacement by the new mixed and hybrid variational principle using the isolated element method
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孤立元法的发展及基于混合-混合变分原理的上下界解分析
。针对固体力学问题,提出了一种不同于传统有限元法的离散化分析方法——孤立单元法。要分析的对象被分成相互分离的元素。对于表示刚体的平移和旋转的每个孤立单元,使用一组提供任意数量自由度的位移函数。应用扩展的最小势能原理来满足相邻孤立单元位移的连续性。该方法不使用任何节点或弹簧、惩罚函数和拉格朗日乘子。用幂级数的位移函数来描述孤立单元的力学状态,最后用扩展的最小势能原理推导出的变分原理确定幂级数的系数。在此基础上,提出了一种由势能泛函和互补能量泛函组成的混合混合变分原理。这对能量是由一个公式约束的。利用应力和位移作为自变量的新原理,可以同时计算应力和位移。此外,利用新原理和孤立元法分析了上界和下界的解。给出了平面应力问题的算例。我们证明了数值结果具有良好的收敛性,并利用孤立元法,用新的混合和混合变分原理给出了应力和位移的上下界结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forensic Evaluation of Historic Shell Structure: Development of In-Situ Geometry New calculation scheme for compressible Euler equation Numerical study on the hydrate-rich sediment behaviour during depressurization Wind Pressure Characteristics of High-rise buildings in Middle and High-height Urban Areas Spread over Local Terrain Out of Plane Lower Bound Limit Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1