The analysis on parameters of the payload on hyperspectral satellite

Daming Wang, Fang Hou, Zhizhong Li, Fuxing Dang, Rihong Yang, Z. J. Xiao
{"title":"The analysis on parameters of the payload on hyperspectral satellite","authors":"Daming Wang, Fang Hou, Zhizhong Li, Fuxing Dang, Rihong Yang, Z. J. Xiao","doi":"10.1117/12.910365","DOIUrl":null,"url":null,"abstract":"This paper focuses on the analysis and selection of space-borne hyperspectral sensor parameters, through the simulation of the entire data acquisition process and the applications using simulated hyperspectral data. Aiming at the alteration mineral identification and mapping, we used the simulated space-borne hyperspectral data with different payload parameters including the spatial resolution, spectral resolution and Signal-to-Noise-Rate (SNR) from HyMAP air-borne hyperspectral data in Dongtianshan area in Xinjiang Province of China to identify and map the alteration minerals, so that we could analyze and compare these results to find the optimal combination of payload parameters. A combination of the parameters of 30m spatial resolution, 10 - 20nm spectral resolution and 200:1 (VNIR) / 150:1 (SWIR) SNR was evaluated to possess the strongest ability for the mineral identification and mapping. This technology can also be promoted by the other payload parameter analysis and selection.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.910365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the analysis and selection of space-borne hyperspectral sensor parameters, through the simulation of the entire data acquisition process and the applications using simulated hyperspectral data. Aiming at the alteration mineral identification and mapping, we used the simulated space-borne hyperspectral data with different payload parameters including the spatial resolution, spectral resolution and Signal-to-Noise-Rate (SNR) from HyMAP air-borne hyperspectral data in Dongtianshan area in Xinjiang Province of China to identify and map the alteration minerals, so that we could analyze and compare these results to find the optimal combination of payload parameters. A combination of the parameters of 30m spatial resolution, 10 - 20nm spectral resolution and 200:1 (VNIR) / 150:1 (SWIR) SNR was evaluated to possess the strongest ability for the mineral identification and mapping. This technology can also be promoted by the other payload parameter analysis and selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱卫星载荷参数分析
本文重点对星载高光谱传感器的参数进行了分析和选择,通过对整个数据采集过程的仿真以及利用仿真高光谱数据的应用进行了研究。针对蚀变矿物识别与填图,利用HyMAP航空高光谱数据在不同载荷参数(空间分辨率、光谱分辨率和信噪比)下对新疆东天山地区的蚀变矿物进行了模拟星载高光谱数据识别与填图,并对结果进行了分析比较,找出了最佳载荷参数组合。30m空间分辨率、10 ~ 20nm光谱分辨率和200:1 (VNIR) / 150:1 (SWIR)信噪比的组合参数具有最强的矿物识别和制图能力。该技术也可以通过其他载荷参数的分析和选择来推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites On-orbit geometric calibration and validation of Optical-1 HR Effectiveness analysis of ACOS-Xco2 bias correction method with GEOS-Chem model results Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image Temporal and spatial analysis of global GOSAT XCO2 variations characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1