Mapping land cover of the Yellow River source using multi-temporal Landsat images

Yong Hu, Liangyun Liu, Lingling Liu, Quanjun Jiao, Jianhua Jia
{"title":"Mapping land cover of the Yellow River source using multi-temporal Landsat images","authors":"Yong Hu, Liangyun Liu, Lingling Liu, Quanjun Jiao, Jianhua Jia","doi":"10.1117/12.910403","DOIUrl":null,"url":null,"abstract":"Land cover is a crucial product required to be calibrated, validated and used in various land surface models that provide the boundary conditions for the simulation of climate, carbon cycle and ecosystem change. This paper presented a method to map land cover from multitemporal landsat images using Dempster-Shafer theory of evidence. The method firstly resolved in Gaussian probability density function calculate the basic probability assignment of each single satellite image, then multitemporal landsat images were combined using Dempster's Rule of combination. Finally, a decision rule based on ancillary information is used to make classification decisions. This method had 87.91% overall accuracy for the land cover types compared with the result of the Aerial hyperspectral image classification. The results of this study showed that Dempster-Shafer theory of evidence is an effective tool to map land cover using multitemporal landsat image.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.910403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Land cover is a crucial product required to be calibrated, validated and used in various land surface models that provide the boundary conditions for the simulation of climate, carbon cycle and ecosystem change. This paper presented a method to map land cover from multitemporal landsat images using Dempster-Shafer theory of evidence. The method firstly resolved in Gaussian probability density function calculate the basic probability assignment of each single satellite image, then multitemporal landsat images were combined using Dempster's Rule of combination. Finally, a decision rule based on ancillary information is used to make classification decisions. This method had 87.91% overall accuracy for the land cover types compared with the result of the Aerial hyperspectral image classification. The results of this study showed that Dempster-Shafer theory of evidence is an effective tool to map land cover using multitemporal landsat image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多时相Landsat影像的黄河源区土地覆盖制图
土地覆盖是各种陆地表面模型中需要校准、验证和使用的关键产品,这些模型为模拟气候、碳循环和生态系统变化提供了边界条件。本文提出了一种利用邓普斯特-谢弗证据理论从多时相陆地卫星图像中绘制土地覆盖图的方法。该方法首先在高斯概率密度函数中求解各卫星图像的基本概率赋值,然后利用Dempster组合规则对多时相陆地卫星图像进行组合。最后,利用基于辅助信息的决策规则进行分类决策。与航空高光谱影像分类结果相比,该方法对土地覆盖类型的总体精度为87.91%。研究结果表明,邓普斯特-谢弗证据理论是利用多时相陆地卫星影像进行土地覆盖制图的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites On-orbit geometric calibration and validation of Optical-1 HR Effectiveness analysis of ACOS-Xco2 bias correction method with GEOS-Chem model results Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image Temporal and spatial analysis of global GOSAT XCO2 variations characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1