Domain Specific Fusion of Unstructured Text for Situation Understanding (Poster)

E. Bosse, Julian Falardeau, Isabelle Prévost, E. Shahbazian, Olivier Labonté
{"title":"Domain Specific Fusion of Unstructured Text for Situation Understanding (Poster)","authors":"E. Bosse, Julian Falardeau, Isabelle Prévost, E. Shahbazian, Olivier Labonté","doi":"10.23919/fusion43075.2019.9011243","DOIUrl":null,"url":null,"abstract":"This paper presents the initial design and the current and envisaged functionalities of a novel tool for information extraction and reasoning from open source data (OSD), namely, the Open Source Information Collection, Analysis and Reasoning (OSCAR). It has the ability to ingest and process vast amount of OSD to provide situation understanding and decision support about domain specific situations. The data are pre-filtered using a custom created knowledge base (KB) while the information is extracted using the Rule Based Information Extraction (RuBIE), a Natural Language Processing (NLP) and tagging tool. The extracted information is subsequently clustered and transformed into a relation graph of entities of interest. This proof of concept is presented in the context of a use case based on the social crisis in Venezuela in 2019.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the initial design and the current and envisaged functionalities of a novel tool for information extraction and reasoning from open source data (OSD), namely, the Open Source Information Collection, Analysis and Reasoning (OSCAR). It has the ability to ingest and process vast amount of OSD to provide situation understanding and decision support about domain specific situations. The data are pre-filtered using a custom created knowledge base (KB) while the information is extracted using the Rule Based Information Extraction (RuBIE), a Natural Language Processing (NLP) and tagging tool. The extracted information is subsequently clustered and transformed into a relation graph of entities of interest. This proof of concept is presented in the context of a use case based on the social crisis in Venezuela in 2019.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向情境理解的非结构化文本领域特定融合(海报)
本文介绍了一种用于从开源数据(OSD)中提取信息和推理的新工具的初始设计以及当前和设想的功能,即开源信息收集、分析和推理(OSCAR)。它能够摄取和处理大量OSD,以提供关于领域特定情况的情况理解和决策支持。使用自定义创建的知识库(KB)对数据进行预过滤,而使用基于规则的信息提取(RuBIE)提取信息,这是一种自然语言处理(NLP)和标记工具。提取的信息随后被聚类并转换成感兴趣实体的关系图。这一概念验证是在基于2019年委内瑞拉社会危机的用例背景下提出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuum Detection and Predictive-Corrective Classification of Crack Networks Adaptive BM3D Algorithm for Image Denoising Using Coefficient of Variation A Latent Variable Model State Estimation System for Image Sequences Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1