Dose Analysis in Boron Neutron-capture Cancer Therapy (BNCT) Neutron Generator Based for Breast Cancer

rawi pramusinta, Rosilatul Zailani, Y. Sardjono
{"title":"Dose Analysis in Boron Neutron-capture Cancer Therapy (BNCT) Neutron Generator Based for Breast Cancer","authors":"rawi pramusinta, Rosilatul Zailani, Y. Sardjono","doi":"10.24246/ijpna.v4i1.8-11","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to know the concentration of boron and irradiation times which optimizes the treatment of breast cancer using the BNCT method. This research was conducted by using MCNPX simulation which outputs are flux neutron, neutron scattering dose and gamma dose. The neutron source used is the BSA D-D Neutron generator model. The independent variable of this research is the boron concentration injected into the cancer. The dependent variable is the total dose rate and irradiation time which determines the effectiveness of  BNCT therapy. The controlled variables are the output of the neutron flux, dose and gamma neutron scattering dose. The results showed that in the range of 70-150 µg/g, the dose rate received by cancer increases with increasing the concentration of boron-10. If the dose rate is increased, the irradiation time interval will be faster. The Boron dose of 70 μg/g and the dose rate of irradiation 0.00293603 Gy/sec needs an irradiation time of 409.43 minutes; the boron dose of 90 µg/g and the dose rate of irradiation 0.00241049 Gy/sec needs an irradiation time of 345.71 minutes; the boron dose of 110 µg/g and the dose rate of irradiation 0.00271236 Gy/sec needs an irradiation time of 307.24 minutes; the boron dose of 130 µg/g and the dose rate of irradiation 0.00303389 Gy/sec needs an irradiation time of 274.67 minutes; and the boron dose 150 µg/g and the dose rate of irradiation 0.00334565 Gy/sec needs an irradiation time of 249.08 minutes. The Optimum concentration of boron is 150 µg/g with irradiation time of 249.08 minutes.","PeriodicalId":383123,"journal":{"name":"Indonesian Journal of Physics and Nuclear Applications","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics and Nuclear Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24246/ijpna.v4i1.8-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to know the concentration of boron and irradiation times which optimizes the treatment of breast cancer using the BNCT method. This research was conducted by using MCNPX simulation which outputs are flux neutron, neutron scattering dose and gamma dose. The neutron source used is the BSA D-D Neutron generator model. The independent variable of this research is the boron concentration injected into the cancer. The dependent variable is the total dose rate and irradiation time which determines the effectiveness of  BNCT therapy. The controlled variables are the output of the neutron flux, dose and gamma neutron scattering dose. The results showed that in the range of 70-150 µg/g, the dose rate received by cancer increases with increasing the concentration of boron-10. If the dose rate is increased, the irradiation time interval will be faster. The Boron dose of 70 μg/g and the dose rate of irradiation 0.00293603 Gy/sec needs an irradiation time of 409.43 minutes; the boron dose of 90 µg/g and the dose rate of irradiation 0.00241049 Gy/sec needs an irradiation time of 345.71 minutes; the boron dose of 110 µg/g and the dose rate of irradiation 0.00271236 Gy/sec needs an irradiation time of 307.24 minutes; the boron dose of 130 µg/g and the dose rate of irradiation 0.00303389 Gy/sec needs an irradiation time of 274.67 minutes; and the boron dose 150 µg/g and the dose rate of irradiation 0.00334565 Gy/sec needs an irradiation time of 249.08 minutes. The Optimum concentration of boron is 150 µg/g with irradiation time of 249.08 minutes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于乳腺癌硼中子俘获癌治疗(BNCT)中子发生器的剂量分析
本研究的目的是了解硼的浓度和照射次数,从而优化BNCT治疗乳腺癌的方法。本研究采用MCNPX模拟,输出通量中子、中子散射剂量和伽马剂量。使用的中子源是BSA D-D中子发生器模型。这项研究的独立变量是注入癌细胞的硼浓度。因变量是总剂量率和照射时间,它们决定了BNCT治疗的有效性。控制变量是中子通量、剂量和中子散射剂量的输出。结果表明,在70 ~ 150µg/g范围内,随着硼-10浓度的增加,肿瘤接受的剂量率增大。如果剂量率增加,照射时间间隔会变快。硼的剂量为70 μg/g,辐照剂量率为0.00293603 Gy/sec,辐照时间为409.43 min;硼的剂量为90µg/g,辐照剂量率为0.00241049 Gy/sec,辐照时间为345.71 min;硼剂量为110µg/g,辐照剂量率为0.00271236 Gy/sec,辐照时间为307.24 min;硼剂量为130µg/g,辐照剂量率为0.00303389 Gy/sec,辐照时间为274.67 min;硼剂量为150µg/g,辐照剂量率为0.00334565 Gy/sec,辐照时间为249.08 min。硼的最佳浓度为150µg/g,辐照时间为249.08 min。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAMMA RADIATION ANALYSIS ON IN VIVO/ IN VITRO TESTING FACILITY BORON NEUTRON CAPTURE THERAPY The Role of Radiologic Technology in Enforcing Diagnosis of Covid-19 Disease: Case Report at RSPAW Salatiga Distribution of Water Phantom BNCT Cyclotron based Using PHITS FACTORS AFFECTING INFANT MORTALITY RATE IN KARANGASEM, BALI Dose Analysis in Boron Neutron-capture Cancer Therapy (BNCT) Neutron Generator Based for Breast Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1