A. A. Gaffar, O. Mencer, W. Luk, P. Cheung, N. Shirazi
{"title":"Floating-point bitwidth analysis via automatic differentiation","authors":"A. A. Gaffar, O. Mencer, W. Luk, P. Cheung, N. Shirazi","doi":"10.1109/FPT.2002.1188677","DOIUrl":null,"url":null,"abstract":"Automatic bitwidth analysis is a key ingredient for highlevel programming of FPGAs and high-level synthesis of VLSI circuits. The objective is to find the minimal number of bits to represent a value in order to minimise the circuit area and to improve efficiency of the respective arithmetic operations, while satisfying user-defined numerical constraints. We present a novel approach to bitwidth- or precision-analysis for floating-point designs. The approach involves analysing the dataflow graph representation of a design to see how sensitive the output of a node is to changes in the outputs of other nodes: higher sensitivity requires higher precision and hence more output bits. We automate such sensitivity analysis by a mathematical method called automatic differentiation, which involves differentiating variables in a design with respect to other variables. We illustrate our approach by optimising the bitwidth for two examples, a discrete Fourier transform (DFT) implementation and a Finite Impulse Response (FIR) filter implementation.","PeriodicalId":355740,"journal":{"name":"2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2002.1188677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
Automatic bitwidth analysis is a key ingredient for highlevel programming of FPGAs and high-level synthesis of VLSI circuits. The objective is to find the minimal number of bits to represent a value in order to minimise the circuit area and to improve efficiency of the respective arithmetic operations, while satisfying user-defined numerical constraints. We present a novel approach to bitwidth- or precision-analysis for floating-point designs. The approach involves analysing the dataflow graph representation of a design to see how sensitive the output of a node is to changes in the outputs of other nodes: higher sensitivity requires higher precision and hence more output bits. We automate such sensitivity analysis by a mathematical method called automatic differentiation, which involves differentiating variables in a design with respect to other variables. We illustrate our approach by optimising the bitwidth for two examples, a discrete Fourier transform (DFT) implementation and a Finite Impulse Response (FIR) filter implementation.