The Ustc System for Adress-m Challenge

Kangdi Mei, Xinyun Ding, Yinlong Liu, Zhiqiang Guo, Feiyang Xu, Xin Li, Tuya Naren, Jiahong Yuan, Zhenhua Ling
{"title":"The Ustc System for Adress-m Challenge","authors":"Kangdi Mei, Xinyun Ding, Yinlong Liu, Zhiqiang Guo, Feiyang Xu, Xin Li, Tuya Naren, Jiahong Yuan, Zhenhua Ling","doi":"10.1109/ICASSP49357.2023.10094714","DOIUrl":null,"url":null,"abstract":"This paper describes our submission to the ICASSP 2023 Signal Processing Grand Challenge (SPGC), which focuses on multilingual Alzheimer’s disease (AD) recognition through spontaneous speech. Our approaches include using a variety of acoustic features and silence-related information for AD detection and mini-mental state examination (MMSE) score prediction, and fine-tuning wav2vec2.0 models on speech in various frequency bands for AD detection. Our overall results on the test data outperform the baseline provided by the organizers, achieving 73.9% accuracy in AD detection by fine-tuning our bilingual wav2vec2.0 pre-trained model on the 0-1000Hz frequency band speech, and 4.610 RMSE (r = 0.565) in MMSE prediction through the fusion of eGeMAPS and silence features.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10094714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes our submission to the ICASSP 2023 Signal Processing Grand Challenge (SPGC), which focuses on multilingual Alzheimer’s disease (AD) recognition through spontaneous speech. Our approaches include using a variety of acoustic features and silence-related information for AD detection and mini-mental state examination (MMSE) score prediction, and fine-tuning wav2vec2.0 models on speech in various frequency bands for AD detection. Our overall results on the test data outperform the baseline provided by the organizers, achieving 73.9% accuracy in AD detection by fine-tuning our bilingual wav2vec2.0 pre-trained model on the 0-1000Hz frequency band speech, and 4.610 RMSE (r = 0.565) in MMSE prediction through the fusion of eGeMAPS and silence features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ustc address -m挑战系统
本文描述了我们向ICASSP 2023信号处理大挑战(SPGC)提交的论文,该挑战侧重于通过自发语音识别多语言阿尔茨海默病(AD)。我们的方法包括使用各种声学特征和与沉默相关的信息进行AD检测和迷你精神状态检查(MMSE)评分预测,并对不同频段的语音进行wav2vec2.0模型微调以用于AD检测。我们在测试数据上的总体结果优于主办方提供的基线,在0-1000Hz频带语音上对双语wav2vec2.0预训练模型进行微调,AD检测准确率达到73.9%,通过融合eGeMAPS和沉默特征,MMSE预测准确率达到4.610 RMSE (r = 0.565)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight Machine Learning for Seizure Detection on Wearable Devices MSN-net: Multi-Scale Normality Network for Video Anomaly Detection ITER-SIS: Robust Unlimited Sampling Via Iterative Signal Sieving Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter MMATR: A Lightweight Approach for Multimodal Sentiment Analysis Based on Tensor Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1