Learning Deep Matching-Aware Network for Text Recommendation using Clickthrough Data

Haonan Liu, Nankai Lin, Zitao Chen, Ke Li, Sheng-yi Jiang
{"title":"Learning Deep Matching-Aware Network for Text Recommendation using Clickthrough Data","authors":"Haonan Liu, Nankai Lin, Zitao Chen, Ke Li, Sheng-yi Jiang","doi":"10.1109/IALP48816.2019.9037682","DOIUrl":null,"url":null,"abstract":"With the trend of information globalization, the volume of text information is exploding, which results in the information overload problem. Text recommendation system has shown to be a valuable tool to help users in such situations of information overload. In general, most researchers define text recommendation as a static problem, ignoring sequential information. In this paper, we propose a text recommendation framework with matching-aware interest extractor and dynamic interest extractor. We apply the Attention-based Long Short-Term Memory Network (LSTM) to model a user’ s dynamic interest. Besides, we model a user’ s static interest with the idea of semantic matching. We integrate dynamic interest and static interest of users’ and decide whether to recommend a text. We also propose a reasonable method to construct a text recommendation dataset with clickthrough data from CCIR 2018 shared task Personal Recommendation. We test our model and other baseline models on the dataset. The experiment shows our model outperforms all the baseline models and a state-of-the-art model, and the Fl-score of our model reaches 0.76.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the trend of information globalization, the volume of text information is exploding, which results in the information overload problem. Text recommendation system has shown to be a valuable tool to help users in such situations of information overload. In general, most researchers define text recommendation as a static problem, ignoring sequential information. In this paper, we propose a text recommendation framework with matching-aware interest extractor and dynamic interest extractor. We apply the Attention-based Long Short-Term Memory Network (LSTM) to model a user’ s dynamic interest. Besides, we model a user’ s static interest with the idea of semantic matching. We integrate dynamic interest and static interest of users’ and decide whether to recommend a text. We also propose a reasonable method to construct a text recommendation dataset with clickthrough data from CCIR 2018 shared task Personal Recommendation. We test our model and other baseline models on the dataset. The experiment shows our model outperforms all the baseline models and a state-of-the-art model, and the Fl-score of our model reaches 0.76.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用点击数据学习文本推荐的深度匹配感知网络
随着信息全球化的趋势,文本信息量呈爆炸式增长,导致了信息过载问题。文本推荐系统已被证明是一种有价值的工具,可以帮助用户在这种信息过载的情况下。一般来说,大多数研究者将文本推荐定义为一个静态问题,忽略了顺序信息。本文提出了一种具有匹配感知兴趣提取器和动态兴趣提取器的文本推荐框架。我们应用基于注意的长短期记忆网络(LSTM)来模拟用户的动态兴趣。此外,我们利用语义匹配的思想对用户的静态兴趣进行建模。我们综合用户的动态兴趣和静态兴趣来决定是否推荐文本。我们还提出了一种合理的方法,利用CCIR 2018共享任务个人推荐的点击率数据构建文本推荐数据集。我们在数据集上测试我们的模型和其他基线模型。实验表明,我们的模型优于所有的基线模型和最先进的模型,我们的模型的fl得分达到0.76。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A General Procedure for Improving Language Models in Low-Resource Speech Recognition Automated Prediction of Item Difficulty in Reading Comprehension Using Long Short-Term Memory An Measurement Method of Ancient Poetry Difficulty for Adaptive Testing How to Answer Comparison Questions An Enhancement of Malay Social Media Text Normalization for Lexicon-Based Sentiment Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1