Measurement of manufacturing resolution for two photon polymerization structures with different manufacturing parameters

T. Chung, Wan-Jou Li, Sheng-Yuan Chen, Chi-Hou Hoi
{"title":"Measurement of manufacturing resolution for two photon polymerization structures with different manufacturing parameters","authors":"T. Chung, Wan-Jou Li, Sheng-Yuan Chen, Chi-Hou Hoi","doi":"10.1117/12.2182421","DOIUrl":null,"url":null,"abstract":"This paper studied manufacturing resolutions of micro structures made by two photon polymerization (TPP) technology with different manufacturing parameters. The light source used for the TPP manufacturing system was a low-cost 532 nm Nd:YAG green laser, and the material used was commercial resin Photomer 3015. Two objective lenses, one with magnification of 100 times (100x) and numerical aperture (NA) of 1.3 and the other with 50x and NA0.8 were used in TPP production. The manufacturing resolution, which is also named as voxel size, changed with different manufacturing parameters such as laser power and exposure time. The measurement results of TPP structures manufactured with different manufacturing parameters indicated that the minimum line width produced by the 100x-NA1.3 lens could be reduced down to 67 nanometer (nm), which was quite good for TPP systems with low-cost Nd:YAG laser.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2182421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper studied manufacturing resolutions of micro structures made by two photon polymerization (TPP) technology with different manufacturing parameters. The light source used for the TPP manufacturing system was a low-cost 532 nm Nd:YAG green laser, and the material used was commercial resin Photomer 3015. Two objective lenses, one with magnification of 100 times (100x) and numerical aperture (NA) of 1.3 and the other with 50x and NA0.8 were used in TPP production. The manufacturing resolution, which is also named as voxel size, changed with different manufacturing parameters such as laser power and exposure time. The measurement results of TPP structures manufactured with different manufacturing parameters indicated that the minimum line width produced by the 100x-NA1.3 lens could be reduced down to 67 nanometer (nm), which was quite good for TPP systems with low-cost Nd:YAG laser.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同制造参数下两种光子聚合结构制造分辨率的测量
研究了双光子聚合(TPP)技术在不同制造参数下的微结构制造分辨率。TPP制造系统使用的光源是低成本的532 nm Nd:YAG绿色激光器,使用的材料是商用树脂光度计3015。两种物镜,一种放大率为100倍(100倍),数值孔径(NA)为1.3,另一种放大率为50倍,NA0.8。制造分辨率,也称为体素大小,随着激光功率和曝光时间等制造参数的不同而变化。对不同制造参数下的TPP结构的测量结果表明,100x-NA1.3透镜产生的最小线宽可以降低到67纳米(nm),这对于低成本Nd:YAG激光器的TPP系统来说是非常好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method of gear defect intelligent detection based on transmission noise Simulation research on ATP system of airborne laser communication Multifocal axial confocal microscopic scanning with a phase-only liquid crystal spatial light modulator Small sample analysis of vision measurement error Double-grating diffraction interferometric stylus probing system for surface profiling and roughness measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1