Word-parallel coprocessor architecture for digital nearest Euclidean distance search

T. Akazawa, S. Sasaki, H. Mattausch
{"title":"Word-parallel coprocessor architecture for digital nearest Euclidean distance search","authors":"T. Akazawa, S. Sasaki, H. Mattausch","doi":"10.1109/ESSCIRC.2013.6649124","DOIUrl":null,"url":null,"abstract":"The reported digital, word-parallel and scalable coprocessor architecture for nearest Euclidean distance (ED) search is based on mapping the distance into time domain onto an equivalent clock number. Area-efficient sequential square calculation and a minimization algorithm of the clock number necessary for the search are applied for practical efficiency. Experimental concept verification was done with an 180nm CMOS design implementing 32 reference vectors with 16 components and 8 bit per component. The fabricated test chips achieved 1.19μs average search time, 5.77 μs worst-case search time and low power dissipation of 8.75mW at 47MHz and Vdd=1.8V for code-book-based picture compression. To our best knowledge this is the first report of practical, word-parallel, digital nearest ED-search architecture. In comparison to previous digital-analog ASIC and GPU implementations, factors 1.8 and 4.5·105 smaller power delay products per 1NN search are realized, respectively.","PeriodicalId":183620,"journal":{"name":"2013 Proceedings of the ESSCIRC (ESSCIRC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2013.6649124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The reported digital, word-parallel and scalable coprocessor architecture for nearest Euclidean distance (ED) search is based on mapping the distance into time domain onto an equivalent clock number. Area-efficient sequential square calculation and a minimization algorithm of the clock number necessary for the search are applied for practical efficiency. Experimental concept verification was done with an 180nm CMOS design implementing 32 reference vectors with 16 components and 8 bit per component. The fabricated test chips achieved 1.19μs average search time, 5.77 μs worst-case search time and low power dissipation of 8.75mW at 47MHz and Vdd=1.8V for code-book-based picture compression. To our best knowledge this is the first report of practical, word-parallel, digital nearest ED-search architecture. In comparison to previous digital-analog ASIC and GPU implementations, factors 1.8 and 4.5·105 smaller power delay products per 1NN search are realized, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字最接近欧几里得距离搜索的字并行协处理器结构
最近欧几里得距离(ED)搜索的数字、字并行和可扩展协处理器架构是基于将距离映射到时域到等效时钟数。为了提高实际效率,采用了面积效率的顺序平方计算和搜索所需时钟数的最小化算法。实验概念验证采用180nm CMOS设计,实现32个参考矢量,16个元件,每个元件8位。测试芯片在47MHz和Vdd=1.8V下的平均搜索时间为1.19μs,最差搜索时间为5.77 μs,功耗为8.75mW。据我们所知,这是第一份实用的、并行的、数字化的最接近ed搜索架构的报告。与以前的数字模拟ASIC和GPU实现相比,每1NN搜索的功率延迟分别减少1.8倍和4.5·105倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 180nm fully-integrated dual-channel reconfigurable receiver for GNSS interoperations A 40 nm LP CMOS self-biased continuous-time comparator with sub-100ps delay at 1.1V & 1.2mW MEMS for automotive and consumer electronics A resistor-based temperature sensor for MEMS frequency references A 13.2% locking-range divide-by-6, 3.1mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1