Joint Resource Allocation, Computation Offloading, and Path Planning for UAV Based Hierarchical Fog-Cloud Mobile Systems

N. Ti, Long Bao Le
{"title":"Joint Resource Allocation, Computation Offloading, and Path Planning for UAV Based Hierarchical Fog-Cloud Mobile Systems","authors":"N. Ti, Long Bao Le","doi":"10.1109/CCE.2018.8465572","DOIUrl":null,"url":null,"abstract":"In this paper, the computation offloading problem for the hierarchical fog-cloud computing (FCC) system with unmanned aerial vehicles (UAVs) is studied. The hierarchical FCC, which exploits both centralized and distributed computing architectures, is very promising to support computation offloading in emerging computation-demanding mobile applications. In our design, UAVs integrating computing platforms act as small distributed clouds while the macro base station (BS) integrates a more powerful central cloud server. Furthermore, the multiple input multiple output (MIMO) technology is employed for data communication. We assume that mobile users (UEs) and (UAVs) can change their locations over time and we consider the joint task offloading, user-cloud/cloudlet association, transmit power allocation, and path planning to minimize the total weighted consumed power of the system. To tackle the underlying non-convex mixed integer non-linear program (MINLP), we propose an iterative two-phase algorithm. Specifically, we iteratively solve the user-cloud/cloudlet association problem in the first phase and address the joint resource allocation, path planning problem in the second phase. Furthermore, we employ the difference of convex (DC) optimization method in the second phase to approximate the non-convex bilinear functions and propose to transform the non-convex INLP to the integer linear program (ILP) in the first phase. Numerical studies confirm that the proposed design for the FCC architecture achieves great performance benefits for executing mobile computation tasks.","PeriodicalId":118716,"journal":{"name":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2018.8465572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, the computation offloading problem for the hierarchical fog-cloud computing (FCC) system with unmanned aerial vehicles (UAVs) is studied. The hierarchical FCC, which exploits both centralized and distributed computing architectures, is very promising to support computation offloading in emerging computation-demanding mobile applications. In our design, UAVs integrating computing platforms act as small distributed clouds while the macro base station (BS) integrates a more powerful central cloud server. Furthermore, the multiple input multiple output (MIMO) technology is employed for data communication. We assume that mobile users (UEs) and (UAVs) can change their locations over time and we consider the joint task offloading, user-cloud/cloudlet association, transmit power allocation, and path planning to minimize the total weighted consumed power of the system. To tackle the underlying non-convex mixed integer non-linear program (MINLP), we propose an iterative two-phase algorithm. Specifically, we iteratively solve the user-cloud/cloudlet association problem in the first phase and address the joint resource allocation, path planning problem in the second phase. Furthermore, we employ the difference of convex (DC) optimization method in the second phase to approximate the non-convex bilinear functions and propose to transform the non-convex INLP to the integer linear program (ILP) in the first phase. Numerical studies confirm that the proposed design for the FCC architecture achieves great performance benefits for executing mobile computation tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无人机分层雾云移动系统的联合资源分配、计算卸载与路径规划
研究了含无人机的分层雾云计算(FCC)系统的计算卸载问题。分层FCC利用集中式和分布式计算架构,非常有希望在新兴的计算要求高的移动应用程序中支持计算卸载。在我们的设计中,集成计算平台的无人机充当小型分布式云,而宏基站(BS)集成了更强大的中央云服务器。此外,采用多输入多输出(MIMO)技术进行数据通信。我们假设移动用户(ue)和(uav)可以随时间改变其位置,并考虑联合任务卸载、用户云/云关联、传输功率分配和路径规划,以最小化系统的总加权消耗功率。为了解决底层非凸混合整数非线性规划(MINLP)问题,我们提出了一种迭代两阶段算法。具体而言,我们在第一阶段迭代解决用户-云/云let关联问题,在第二阶段解决联合资源分配、路径规划问题。在第二阶段,我们采用凸差分优化方法逼近非凸双线性函数,并在第一阶段提出将非凸INLP转化为整数线性规划(ILP)。数值研究证实了所提出的FCC架构设计在执行移动计算任务方面具有很大的性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Optimal Input and Capacity of Non-Coherent Correlated MISO Channels under Per-Antenna Power Constraints Multi-Objective Optimal Resource Allocation Using Particle Swarm Optimization in Cognitive Radio Benchmarking the ONOS Controller with OFCProbe On Selecting the Appropriate Scale in Image Selective Smoothing by Nonlinear Diffusion Multibeam Transmitarrays for 5G Antenna Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1