A Coarse-to-fine Approach for Fast Super-Resolution with Flexible Magnification

Zhichao Fu, Tianlong Ma, Liang Xue, Yingbin Zheng, Hao Ye, Liang He
{"title":"A Coarse-to-fine Approach for Fast Super-Resolution with Flexible Magnification","authors":"Zhichao Fu, Tianlong Ma, Liang Xue, Yingbin Zheng, Hao Ye, Liang He","doi":"10.1145/3469877.3490564","DOIUrl":null,"url":null,"abstract":"We perform fast single image super-resolution with flexible magnification for natural images. A novel coarse-to-fine super-resolution framework is developed for the magnification that is factorized into a maximum integer component and the quotient. Specifically, our framework is embedded with a light-weight upscale network for super-resolution with the integer scale factor, followed by the fine-grained network to guide interpolation on feature maps as well as to generate the super-resolved image. Compared with the previous flexible magnification super-resolution approaches, the proposed framework achieves a tradeoff between computational complexity and performance. We conduct experiments using the coarse-to-fine framework on the standard benchmarks and demonstrate its superiority in terms of effectiveness and efficiency over previous approaches.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We perform fast single image super-resolution with flexible magnification for natural images. A novel coarse-to-fine super-resolution framework is developed for the magnification that is factorized into a maximum integer component and the quotient. Specifically, our framework is embedded with a light-weight upscale network for super-resolution with the integer scale factor, followed by the fine-grained network to guide interpolation on feature maps as well as to generate the super-resolved image. Compared with the previous flexible magnification super-resolution approaches, the proposed framework achieves a tradeoff between computational complexity and performance. We conduct experiments using the coarse-to-fine framework on the standard benchmarks and demonstrate its superiority in terms of effectiveness and efficiency over previous approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种灵活放大的快速超分辨率从粗到精的方法
我们对自然图像进行快速的单图像超分辨率和灵活的放大。提出了一种新的粗到精的超分辨率框架,将放大倍数分解为最大整数分量和商。具体来说,我们的框架嵌入了一个轻量级的高端网络,用于整数比例因子的超分辨率,然后是细粒度网络,用于指导特征图的插值,并生成超分辨率图像。与以往的柔性放大超分辨率方法相比,该框架实现了计算复杂度和性能之间的平衡。我们在标准基准上使用从粗到精的框架进行了实验,并证明了其在有效性和效率方面优于以前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1