Effect of Eccentricity in Microwave Imaging of Multiple Composite Pipes

Yuki Gao, Noshin Raisa, R. Amineh
{"title":"Effect of Eccentricity in Microwave Imaging of Multiple Composite Pipes","authors":"Yuki Gao, Noshin Raisa, R. Amineh","doi":"10.52214/CUSJ.V15I.7805","DOIUrl":null,"url":null,"abstract":"The use of non-metallic composites that are durable, low cost, and lightweight is growing fast in various industries. A commonly used form of these materials is in the shape of pipes that can be used, for instance, in oil and gas industry. Such pipes can be damaged due to material loss (defects and holes), erosions, and more which may cause major production failures or environmental mishaps. To prevent these issues, non-destructive testing (NDT) methods need to be employed for regular inspections of such components. Since traditional NDT methods are mainly used for metallic pipes, recently microwave imaging has been proposed as a promising approach for examination of non-metallic pipes. While microwave imaging can be employed for inspection of multiple layers of pipes, the effect of undesired eccentricity of the pipes can impose additional imaging errors. In this paper, for the first time, we study the effect of eccentricity of the pipes on the images reconstructed using near-field holographic microwave imaging when imaging double pipes.","PeriodicalId":339464,"journal":{"name":"Columbia Undergraduate Science Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Columbia Undergraduate Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52214/CUSJ.V15I.7805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of non-metallic composites that are durable, low cost, and lightweight is growing fast in various industries. A commonly used form of these materials is in the shape of pipes that can be used, for instance, in oil and gas industry. Such pipes can be damaged due to material loss (defects and holes), erosions, and more which may cause major production failures or environmental mishaps. To prevent these issues, non-destructive testing (NDT) methods need to be employed for regular inspections of such components. Since traditional NDT methods are mainly used for metallic pipes, recently microwave imaging has been proposed as a promising approach for examination of non-metallic pipes. While microwave imaging can be employed for inspection of multiple layers of pipes, the effect of undesired eccentricity of the pipes can impose additional imaging errors. In this paper, for the first time, we study the effect of eccentricity of the pipes on the images reconstructed using near-field holographic microwave imaging when imaging double pipes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偏心对多管复合材料微波成像的影响
耐用、低成本、轻量化的非金属复合材料在各行业的应用正在迅速增长。这些材料的一种常用形式是可以用于管道的形状,例如石油和天然气工业。这些管道可能因材料丢失(缺陷和孔洞)、腐蚀等原因而损坏,这可能导致重大生产故障或环境事故。为了防止这些问题,需要采用无损检测(NDT)方法对这些部件进行定期检查。由于传统的无损检测方法主要用于金属管道,近年来微波成像被认为是一种很有前途的非金属管道检测方法。虽然微波成像可以用于多层管道的检测,但管道的不期望偏心的影响会带来额外的成像误差。本文首次研究了双管道成像时,管道偏心对近场全息微波成像重建图像的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inside the Nucleon: Tomographic Interpretations and Universality of GPDs with DDVCS Molecular Mechanisms and Clinical Features of Huntington Disease: A Fatal Neurodegenerative Disorder with Autosomal Dominant Inheritance Expression of Single mRNA Constructs Encoding Both CRISPR-Cas9 Protein and Guide RNAs for Future Gene Therapy Applications Effect of Eccentricity in Microwave Imaging of Multiple Composite Pipes Microbiome Composition and Circadian Rhythm Disruption Alters Epithelial Barrier Integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1