Variation-Aware Defect Characterization at Cell Level

Zahra Paria Najafi-Haghi, Marzieh Hashemipour-Nazari, H. Wunderlich
{"title":"Variation-Aware Defect Characterization at Cell Level","authors":"Zahra Paria Najafi-Haghi, Marzieh Hashemipour-Nazari, H. Wunderlich","doi":"10.1109/ETS48528.2020.9131600","DOIUrl":null,"url":null,"abstract":"Small Delay Faults (SDFs) are an indicator of reliability threats even if they do not affect the behavior of a system at nominal speed. Various defects may evolve over time into a complete system failure, and defects have to be distinguished from delays due to process variations which also change the circuit timing but are benign. Based on Monte-Carlo electrical simulation at cell level, in this work it is shown that a few measurements at different operating points of voltage and frequency are sufficient to identify a defect cell even if its behavior is completely within the specification range. The developed classifier is based on statistical learning and can be annotated to each element of a cell library to support manufacturing test, diagnosis and optimizing the burn-in process or yield.","PeriodicalId":267309,"journal":{"name":"2020 IEEE European Test Symposium (ETS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS48528.2020.9131600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Small Delay Faults (SDFs) are an indicator of reliability threats even if they do not affect the behavior of a system at nominal speed. Various defects may evolve over time into a complete system failure, and defects have to be distinguished from delays due to process variations which also change the circuit timing but are benign. Based on Monte-Carlo electrical simulation at cell level, in this work it is shown that a few measurements at different operating points of voltage and frequency are sufficient to identify a defect cell even if its behavior is completely within the specification range. The developed classifier is based on statistical learning and can be annotated to each element of a cell library to support manufacturing test, diagnosis and optimizing the burn-in process or yield.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞水平上的变异感知缺陷表征
小延迟故障(sdf)是可靠性威胁的指示器,即使它们不影响系统在标称速度下的行为。随着时间的推移,各种缺陷可能演变成一个完整的系统故障,并且必须将缺陷与由工艺变化引起的延迟区分开来,工艺变化也会改变电路定时,但这是良性的。基于在电池水平上的蒙特卡罗电模拟,在这项工作中表明,在电压和频率的不同工作点上进行一些测量足以识别缺陷电池,即使其行为完全在规范范围内。所开发的分类器基于统计学习,可以注释到细胞库的每个元素,以支持制造测试、诊断和优化老化过程或产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determined-Safe Faults Identification: A step towards ISO26262 hardware compliant designs Accurate Measurements of Small Resistances in Vertical Interconnects with Small Aspect Ratios Anomaly Detection in Embedded Systems Using Power and Memory Side Channels The Risk of Outsourcing: Hidden SCA Trojans in Third-Party IP-Cores Threaten Cryptographic ICs A SIFT-based Waveform Clustering Method for aiding analog/mixed-signal IC Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1