{"title":"Test bench for emulating electric-drive vehicle systems using equivalent vehicle rotational inertia","authors":"P. Fajri, R. Ahmadi, M. Ferdowsi","doi":"10.1109/PECI.2013.6506039","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for emulating an electric-drive vehicle (EDV) system on a test bench setup consisting of a dynamometer, flywheel, and an electric propulsion unit is investigated. The equivalent rotational inertia of a vehicle is used to obtain a suitable control method based on vehicle and test bench dynamics. MATLAB/Simulink is used to model the test bench and simulate the control scheme for a standard driving schedule. Moreover, the effect of eliminating the large flywheel from the test model is investigated and changes to the control scheme are discussed. Simulation results of both cases are presented and compared. The results obtained from MATLAB/Simulink are validated using the ADVISOR software and found to be almost the same with minor deviations.","PeriodicalId":113021,"journal":{"name":"2013 IEEE Power and Energy Conference at Illinois (PECI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2013.6506039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, a new approach for emulating an electric-drive vehicle (EDV) system on a test bench setup consisting of a dynamometer, flywheel, and an electric propulsion unit is investigated. The equivalent rotational inertia of a vehicle is used to obtain a suitable control method based on vehicle and test bench dynamics. MATLAB/Simulink is used to model the test bench and simulate the control scheme for a standard driving schedule. Moreover, the effect of eliminating the large flywheel from the test model is investigated and changes to the control scheme are discussed. Simulation results of both cases are presented and compared. The results obtained from MATLAB/Simulink are validated using the ADVISOR software and found to be almost the same with minor deviations.