XSS detection with automatic view isolation on online social network

Pooja Chaudhary, B. Gupta, S. Yamaguchi
{"title":"XSS detection with automatic view isolation on online social network","authors":"Pooja Chaudhary, B. Gupta, S. Yamaguchi","doi":"10.1109/GCCE.2016.7800354","DOIUrl":null,"url":null,"abstract":"Online Social Networks (OSNs) are continuously suffering from the negative impact of Cross-Site Scripting (XSS) vulnerabilities. This paper describes a novel framework for mitigating XSS attack on OSN-based platforms. It is completely based on the request authentication and view isolation approach. It detects XSS attack through validating string value extracted from the vulnerable checkpoint present in the web page by implementing string examination algorithm with the help of XSS attack vector repository. Any similarity (i.e. string is not validated) indicates the presence of malicious code injected by the attacker and finally it removes the script code to mitigate XSS attack. To assess the defending ability of our designed model, we have tested it on OSN-based web application i.e. Humhub. The experimental results revealed that our model discovers the XSS attack vectors with low false negatives and false positive rate tolerable performance overhead.","PeriodicalId":416104,"journal":{"name":"2016 IEEE 5th Global Conference on Consumer Electronics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 5th Global Conference on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2016.7800354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Online Social Networks (OSNs) are continuously suffering from the negative impact of Cross-Site Scripting (XSS) vulnerabilities. This paper describes a novel framework for mitigating XSS attack on OSN-based platforms. It is completely based on the request authentication and view isolation approach. It detects XSS attack through validating string value extracted from the vulnerable checkpoint present in the web page by implementing string examination algorithm with the help of XSS attack vector repository. Any similarity (i.e. string is not validated) indicates the presence of malicious code injected by the attacker and finally it removes the script code to mitigate XSS attack. To assess the defending ability of our designed model, we have tested it on OSN-based web application i.e. Humhub. The experimental results revealed that our model discovers the XSS attack vectors with low false negatives and false positive rate tolerable performance overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XSS检测与在线社交网络上的自动视图隔离
在线社交网络(Online Social Networks, osn)一直受到跨站点脚本(Cross-Site Scripting, XSS)漏洞的负面影响。本文描述了一种新的框架,用于减轻基于osn平台上的跨站攻击。它完全基于请求身份验证和视图隔离方法。该算法利用跨站攻击向量库实现字符串检测算法,对网页中存在的易受攻击的检查点提取的字符串值进行验证,从而检测跨站攻击。任何相似(即字符串未验证)表明存在攻击者注入的恶意代码,最后删除脚本代码以减轻XSS攻击。为了评估我们设计的模型的防御能力,我们在基于osn的web应用程序上进行了测试,即Humhub。实验结果表明,我们的模型发现了具有低假阴性和假阳性率的XSS攻击向量,可以容忍性能开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High power factor boost PFC controller with feedforward adaptive on-time control Comprehensive deformed map generation for wristwatch-type wearable devices based on landmark-based partitioning Analysis of fill-in-blank problem solution results in Java programming course Accuracy improvement in human detection using HOG features on train-mounted camera New intelligent glass curtain with IT2FLC for conversion efficiency enhancement of PV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1