Image denoising based on Laplace distribution with local parameters in Lapped Transform domain

V. K. Nath, A. Mahanta
{"title":"Image denoising based on Laplace distribution with local parameters in Lapped Transform domain","authors":"V. K. Nath, A. Mahanta","doi":"10.5220/0003516900670072","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new image denoising method based on statistical modeling of Lapped Transform (LT) coefficients. The lapped transform coefficients are first rearranged into wavelet like structure, then the rearranged coefficient subband statistics are modeled in a similar way like wavelet coefficients. We propose to model the rearranged LT coefficients in a subband using Laplace probability density function (pdf) with local variance. This simple distribution is well able to model the locality and the heavy tailed property of lapped transform coefficients. A maximum a posteriori (MAP) estimator using the Laplace probability density function (pdf) with local variance is used for the estimation of noise free lapped transform coefficients. Experimental results show that the proposed low complexity image denoising method outperforms several wavelet based image denoising techniques and also outperforms two existing LT based image denoising schemes. Our main contribution in this paper is to use the local Laplace prior for statistical modeling of LT coefficients and to use MAP estimation procedure with this proposed prior to restore the noisy image LT coefficients.","PeriodicalId":103791,"journal":{"name":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003516900670072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we present a new image denoising method based on statistical modeling of Lapped Transform (LT) coefficients. The lapped transform coefficients are first rearranged into wavelet like structure, then the rearranged coefficient subband statistics are modeled in a similar way like wavelet coefficients. We propose to model the rearranged LT coefficients in a subband using Laplace probability density function (pdf) with local variance. This simple distribution is well able to model the locality and the heavy tailed property of lapped transform coefficients. A maximum a posteriori (MAP) estimator using the Laplace probability density function (pdf) with local variance is used for the estimation of noise free lapped transform coefficients. Experimental results show that the proposed low complexity image denoising method outperforms several wavelet based image denoising techniques and also outperforms two existing LT based image denoising schemes. Our main contribution in this paper is to use the local Laplace prior for statistical modeling of LT coefficients and to use MAP estimation procedure with this proposed prior to restore the noisy image LT coefficients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拉普拉斯变换域局部参数的图像去噪
本文提出了一种基于ltp系数统计建模的图像去噪方法。首先将叠置的变换系数重组为类小波结构,然后将重组后的系数子带统计量以类似于小波系数的方式建模。我们建议使用具有局部方差的拉普拉斯概率密度函数(pdf)来模拟子带中重排的LT系数。这种简单的分布很好地模拟了叠接变换系数的局部性和重尾性。利用具有局部方差的拉普拉斯概率密度函数(pdf)的最大后验估计器来估计无噪声的重叠变换系数。实验结果表明,所提出的低复杂度图像去噪方法优于几种基于小波的图像去噪技术,也优于现有的两种基于LT的图像去噪方案。我们在本文中的主要贡献是使用局部拉普拉斯先验对LT系数进行统计建模,并使用MAP估计程序与该提出的先验恢复噪声图像的LT系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent topic visual language model for object categorization Optimal combination of low-level features for surveillance object retrieval Managing multiple media streams in HTML5: The IEEE 1599-2008 case study Automatic sound restoration system concepts and design Visual AER-based processing with convolutions for a parallel supercomputer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1