Complementary features combined in an HMM-based system to recognize handwritten digits

A. Britto
{"title":"Complementary features combined in an HMM-based system to recognize handwritten digits","authors":"A. Britto","doi":"10.1109/ICIAP.2003.1234127","DOIUrl":null,"url":null,"abstract":"We combine complementary features based on foreground and background information in an HMM-based classifier to recognize handwritten digits. A zoning scheme based on column and row models provides a way of dividing the digit into zones without making the features size variant. This strategy allows us to avoid the digit normalization, while it provides a way of having information from specific zones of the digit. Recognition rates around 98% have been achieved using 60,000 digit samples of the NIST SD19 database.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"CE-25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We combine complementary features based on foreground and background information in an HMM-based classifier to recognize handwritten digits. A zoning scheme based on column and row models provides a way of dividing the digit into zones without making the features size variant. This strategy allows us to avoid the digit normalization, while it provides a way of having information from specific zones of the digit. Recognition rates around 98% have been achieved using 60,000 digit samples of the NIST SD19 database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
互补的特点结合在一个基于hmm的系统来识别手写数字
我们在基于hmm的分类器中结合基于前景和背景信息的互补特征来识别手写数字。基于列和行模型的分区方案提供了一种在不改变特征大小的情况下将数字划分为区域的方法。该策略允许我们避免数字规范化,同时它提供了一种从数字的特定区域获取信息的方法。使用NIST SD19数据库的60,000个数字样本,识别率达到98%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1