Blind Signal-to-Noise Ratio Estimation of Real Sinusoid in Additive Noise

G. Romano
{"title":"Blind Signal-to-Noise Ratio Estimation of Real Sinusoid in Additive Noise","authors":"G. Romano","doi":"10.1109/TSP.2019.8769113","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimation of signal-to-noise ratio (SNR) with a real deterministic sinusoid with unknown frequency, phase and amplitude in additive Gaussian noise of unknown variance. The method of moments, a general method to derive estimators based on high-order moments, is used to derive a blind SNR estimator that does not require the knowledge of the instantaneous frequency of the sinusoid, through separate estimation of signal and noise power. Cramer-Rao lower bounds (CRLBs) are also derived for estimators of signal and noise power and then, for SNR estimators. We show through numerical simulations the statistical performances of the estimators, that we compare to the corresponding CRLBs, and discuss their use in practical applications.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8769113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the problem of estimation of signal-to-noise ratio (SNR) with a real deterministic sinusoid with unknown frequency, phase and amplitude in additive Gaussian noise of unknown variance. The method of moments, a general method to derive estimators based on high-order moments, is used to derive a blind SNR estimator that does not require the knowledge of the instantaneous frequency of the sinusoid, through separate estimation of signal and noise power. Cramer-Rao lower bounds (CRLBs) are also derived for estimators of signal and noise power and then, for SNR estimators. We show through numerical simulations the statistical performances of the estimators, that we compare to the corresponding CRLBs, and discuss their use in practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加性噪声下真实正弦波的盲信噪比估计
研究了方差未知的加性高斯噪声中频率、相位和幅值未知的实确定性正弦波的信噪比估计问题。矩量法是一种基于高阶矩量推导估计量的通用方法,通过分别估计信号和噪声功率,推导出不需要知道正弦波瞬时频率的盲信噪比估计量。本文还推导了信号和噪声功率估计器的Cramer-Rao下界,然后推导了信噪比估计器的crlb下界。我们通过数值模拟展示了估计器的统计性能,并与相应的crlb进行了比较,并讨论了它们在实际应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement of Beat Tracking in String Quartet Music Analysis Based on the Teager-Kaiser Energy Operator Smart Speaker: Suspicious Event Detection with Reverse Mode Speakers Supervised Learning in Multi-Agent Environments Using Inverse Point of View Evaluation of Layer 3 Multipath Solutions using Container Technologies Detecting Cluster Synchronization in Chaotic Dynamic Networks via Information Theoretic Measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1