{"title":"A new method to model transient multi-material moisture transfer in automotive electronics applications","authors":"Daniel Markus, M. Schmidt, Karin Lunz, U. Becker","doi":"10.1109/EUROSIME.2016.7463322","DOIUrl":null,"url":null,"abstract":"This paper analyzes moisture diffusion methods regarding their applicability under varying boundary conditions and under consideration of non-linear material properties. It is shown that commonly utilized methods are not adequate for a physically consistent treatment of multimaterial setups with non-linear saturation concentrations. In order to overcome this limitation in moisture modeling, a new method, the so called Surface Humidity Potential approach is introduced, verified, and applied to a moisture simulation of a printed circuit board subjected to an environment encountered in automotive applications. Overall, a sound foundation for moisture analysis of plastic materials encountered in electronic components is established.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper analyzes moisture diffusion methods regarding their applicability under varying boundary conditions and under consideration of non-linear material properties. It is shown that commonly utilized methods are not adequate for a physically consistent treatment of multimaterial setups with non-linear saturation concentrations. In order to overcome this limitation in moisture modeling, a new method, the so called Surface Humidity Potential approach is introduced, verified, and applied to a moisture simulation of a printed circuit board subjected to an environment encountered in automotive applications. Overall, a sound foundation for moisture analysis of plastic materials encountered in electronic components is established.