Legendre polynomials in signal reconstruction and compression

Guoqi Li, C. Wen
{"title":"Legendre polynomials in signal reconstruction and compression","authors":"Guoqi Li, C. Wen","doi":"10.1109/ICIEA.2010.5514776","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method for signal reconstruction using orthogonal transform based on discrete Legendre polynomials. Using such a transform provides computational advantages over polynomial basis. We extend the discrete Legendre polynomials to two-dimensional discrete Legendre polynomials for reconstructing and compressing an image. In the applications, we notice that when the order of a polynomial becomes large, the proposed method tends to exhibit numerical instabilities. We bring forward a possible way to avoid such instabilities. Simulation results illustrate that the error resulted from compression is usually low with a satisfactory compression ratio by using the proposed method. An application in system identification is also presented.","PeriodicalId":234296,"journal":{"name":"2010 5th IEEE Conference on Industrial Electronics and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2010.5514776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a method for signal reconstruction using orthogonal transform based on discrete Legendre polynomials. Using such a transform provides computational advantages over polynomial basis. We extend the discrete Legendre polynomials to two-dimensional discrete Legendre polynomials for reconstructing and compressing an image. In the applications, we notice that when the order of a polynomial becomes large, the proposed method tends to exhibit numerical instabilities. We bring forward a possible way to avoid such instabilities. Simulation results illustrate that the error resulted from compression is usually low with a satisfactory compression ratio by using the proposed method. An application in system identification is also presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信号重构与压缩中的勒让德多项式
本文提出了一种基于离散勒让德多项式的正交变换信号重构方法。使用这样的变换提供了优于多项式基的计算优势。我们将离散的Legendre多项式扩展到二维离散的Legendre多项式,用于图像的重构和压缩。在实际应用中,我们注意到当多项式的阶数变大时,所提出的方法往往表现出数值不稳定性。我们提出了一种避免这种不稳定的可能方法。仿真结果表明,采用该方法得到的压缩误差较小,压缩比较好。并给出了该方法在系统识别中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting next-day electricity prices with Hidden Markov Models Design of HTS Linear Induction Motor using GA and the Finite Element Method Hybrid recurrent fuzzy neural network control for permanent magnet synchronous motor applied in electric scooter Integrating human factors into nanotech sustainability assessment and communication An ID-based content extraction signatures without trusted party
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1