P. Miranda, R. F. Mello, André C. A. Nascimento, Tapas Si
{"title":"Multi-Objective Optimization of Sampling Algorithms Pipeline for Unbalanced Problems","authors":"P. Miranda, R. F. Mello, André C. A. Nascimento, Tapas Si","doi":"10.1109/CEC55065.2022.9870435","DOIUrl":null,"url":null,"abstract":"The sequencing of sampling algorithms has shown to be a promising approach in generating balanced versions of unbalanced data. Sequencing allows different algorithms of under-sampling and/or over-sampling to be performed in sequence, producing a resulting balanced database. However, defining the most appropriate sequence of sampling algorithms is challenging. This article treats the sequencing problem as a combinatorial optimization task and proposes a multi-objective optimization method to seek promising solutions that maximize the performance of classifiers both in accuracy and in F1-score. The results showed that the proposed method was capable of finding optimized sequences that improved the performance of the classifiers, obtaining statistically better results, mainly in F1- score, when compared with competing methods, in most of the selected unbalanced problems.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The sequencing of sampling algorithms has shown to be a promising approach in generating balanced versions of unbalanced data. Sequencing allows different algorithms of under-sampling and/or over-sampling to be performed in sequence, producing a resulting balanced database. However, defining the most appropriate sequence of sampling algorithms is challenging. This article treats the sequencing problem as a combinatorial optimization task and proposes a multi-objective optimization method to seek promising solutions that maximize the performance of classifiers both in accuracy and in F1-score. The results showed that the proposed method was capable of finding optimized sequences that improved the performance of the classifiers, obtaining statistically better results, mainly in F1- score, when compared with competing methods, in most of the selected unbalanced problems.