Room Layout Estimation with Object and Material Attributes Information Using a Spherical Camera

Hansung Kim, T. D. Campos, A. Hilton
{"title":"Room Layout Estimation with Object and Material Attributes Information Using a Spherical Camera","authors":"Hansung Kim, T. D. Campos, A. Hilton","doi":"10.1109/3DV.2016.83","DOIUrl":null,"url":null,"abstract":"In this paper we propose a pipeline for estimating 3D room layout with object and material attribute prediction using a spherical stereo image pair. We assume that the room and objects can be represented as cuboids aligned to the main axes of the room coordinate (Manhattan world). A spherical stereo alignment algorithm is proposed to align two spherical images to the global world coordinate system. Depth information of the scene is estimated by stereo matching between images. Cubic projection images of the spherical RGB and estimated depth are used for object and material attribute detection. A single Convolutional Neural Network is designed to assign object and attribute labels to geometrical elements built from the spherical image. Finally simplified room layout is reconstructed by cuboid fitting. The reconstructed cuboid-based model shows the structure of the scene with object information and material attributes.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper we propose a pipeline for estimating 3D room layout with object and material attribute prediction using a spherical stereo image pair. We assume that the room and objects can be represented as cuboids aligned to the main axes of the room coordinate (Manhattan world). A spherical stereo alignment algorithm is proposed to align two spherical images to the global world coordinate system. Depth information of the scene is estimated by stereo matching between images. Cubic projection images of the spherical RGB and estimated depth are used for object and material attribute detection. A single Convolutional Neural Network is designed to assign object and attribute labels to geometrical elements built from the spherical image. Finally simplified room layout is reconstructed by cuboid fitting. The reconstructed cuboid-based model shows the structure of the scene with object information and material attributes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用球面相机估算物体和材料属性信息的房间布局
本文提出了一种利用球面立体图像对预测物体和材料属性来估计三维房间布局的管道。我们假设房间和物体可以表示为与房间坐标的主轴对齐的长方体(曼哈顿世界)。提出了一种球面立体对准算法,将两幅球面图像对准全球坐标系。通过图像之间的立体匹配来估计场景的深度信息。使用球面RGB的三次投影图像和估计深度进行物体和材料属性检测。一个单独的卷积神经网络被设计用来分配对象和属性标签到从球面图像构建的几何元素。最后通过长方体拟合对简化后的房间布局进行重构。基于长方体的重构模型通过物体信息和材料属性显示场景的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monocular, Real-Time Surface Reconstruction Using Dynamic Level of Detail Room Layout Estimation with Object and Material Attributes Information Using a Spherical Camera Real-Time Surface of Revolution Reconstruction on Dense SLAM 3D Data Acquisition and Registration Using Two Opposing Kinects Cotemporal Multi-View Video Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1