Jiann-Jong Chen, P. Wu, Ta-Wei Chao, Y. Ku, Yuh-Shyan Hwang, Cheng-Chieh Yu
{"title":"A low-noise high-efficient buck converter with noise-shaping technique","authors":"Jiann-Jong Chen, P. Wu, Ta-Wei Chao, Y. Ku, Yuh-Shyan Hwang, Cheng-Chieh Yu","doi":"10.1109/VLSI-DAT.2015.7114515","DOIUrl":null,"url":null,"abstract":"In this paper, a buck converter is designed with a noise-shaping technique to reduce noise and uses synchronous rectification to increase power efficiency. The measured results show the peak noise level less than -84.5dBm at 2MHz and achieve 85% to 93.5% power efficiency with output voltage between 1.8V to 2.5V and a load current range from 50mA to 200mA. The buck converter is fabricated with TSMC 0.35μm CMOS DPQM process. The chip area is 1.417mm*1.239 mm.","PeriodicalId":369130,"journal":{"name":"VLSI Design, Automation and Test(VLSI-DAT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Design, Automation and Test(VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2015.7114515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a buck converter is designed with a noise-shaping technique to reduce noise and uses synchronous rectification to increase power efficiency. The measured results show the peak noise level less than -84.5dBm at 2MHz and achieve 85% to 93.5% power efficiency with output voltage between 1.8V to 2.5V and a load current range from 50mA to 200mA. The buck converter is fabricated with TSMC 0.35μm CMOS DPQM process. The chip area is 1.417mm*1.239 mm.