An Exhaust Gas Temperature Increase Technique Using EGR Device for the Application of Waste Heat Recovery Technology on a Lean Burn Gas Engine

Yasuhisa Ichikawa, H. Sekiguchi, O. Bondarenko, K. Hirata
{"title":"An Exhaust Gas Temperature Increase Technique Using EGR Device for the Application of Waste Heat Recovery Technology on a Lean Burn Gas Engine","authors":"Yasuhisa Ichikawa, H. Sekiguchi, O. Bondarenko, K. Hirata","doi":"10.1115/ICEF2018-9635","DOIUrl":null,"url":null,"abstract":"This study aims to develop an exhaust gas temperature increase technique of a lean burn gas engine, to improve the performance of the waste heat recovery devices that potentially can be installed in the future. This paper shows the exhaust gas temperature increase technique using an EGR device.\n In our experiments, the lean burn gas engine has the rated power output of 400 kW with spark-ignition and pre-chamber systems. The EGR device was developed and installed to the gas engine. The experimental results showed that the exhaust gas temperature was increased to +30 °C at the EGR rate of 15 % with maintained NOx emission and CA MFB 50% by decreasing the relative air/fuel ratio (Λ) and advancing the ignition timing (θig). In addition, the gross generation efficiency was slightly increased with increasing the EGR rate. This result was explained using three factors; the internal engine efficiency, the combustion efficiency, and the recirculated energy rate.","PeriodicalId":441369,"journal":{"name":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop an exhaust gas temperature increase technique of a lean burn gas engine, to improve the performance of the waste heat recovery devices that potentially can be installed in the future. This paper shows the exhaust gas temperature increase technique using an EGR device. In our experiments, the lean burn gas engine has the rated power output of 400 kW with spark-ignition and pre-chamber systems. The EGR device was developed and installed to the gas engine. The experimental results showed that the exhaust gas temperature was increased to +30 °C at the EGR rate of 15 % with maintained NOx emission and CA MFB 50% by decreasing the relative air/fuel ratio (Λ) and advancing the ignition timing (θig). In addition, the gross generation efficiency was slightly increased with increasing the EGR rate. This result was explained using three factors; the internal engine efficiency, the combustion efficiency, and the recirculated energy rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用EGR装置提高废气温度的技术及其余热回收技术在稀燃燃气发动机上的应用
本研究旨在开发一种稀薄燃烧燃气发动机的废气温度升高技术,以提高未来可能安装的余热回收装置的性能。本文介绍了利用EGR装置提高废气温度的技术。在我们的实验中,采用火花点火和预燃室系统的贫燃燃气发动机的额定输出功率为400 kW。研制并安装在燃气发动机上的EGR装置。实验结果表明,通过降低相对空燃比(Λ)和提前点火正时(θig),在EGR率为15%的情况下,将废气温度提高到+30℃,保持NOx排放和CA MFB为50%。此外,总发电效率随EGR率的增加而略有增加。这一结果可以用三个因素来解释;发动机内部效率,燃烧效率,再循环能量率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GTL Kerosene and N-Butanol in RCCI Mode: Combustion and Emissions Investigation Emission and Combustion Characteristics of Diesel Engine Fumigated With Ammonia Effects of Outlier Flow Field on the Characteristics of In-Cylinder Coherent Structures Identified by POD-Based Conditional Averaging and Quadruple POD CI Engine Model Predictive Control With Availability Destruction Minimization Investigation of the Impact of Adding Titanium Dioxide to Jojoba Biodiesel-Diesel-N-Hexane Mixture on the Performance and Emission Characteristics of a Diesel Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1