Optimal Control of Flotation Industrial Process Using Model-based Reinforcement Learning

Runda Jia, Xuli Chen, Jun Zheng, Gang Yu
{"title":"Optimal Control of Flotation Industrial Process Using Model-based Reinforcement Learning","authors":"Runda Jia, Xuli Chen, Jun Zheng, Gang Yu","doi":"10.1109/IAI55780.2022.9976694","DOIUrl":null,"url":null,"abstract":"In this paper, the optimal control of the flotation industrial process (FIP) is studied. The flotation process uses differences in the physical and chemical properties of mineral surfaces to selectively attach minerals to air bubbles, and separate useful from useless minerals. To optimize control of the process, we use the model-based reinforcement learning (MBRL) method to design the optimal controller for the flotation process. A case study on the flotation mechanism model verifies the efficiency of the proposed method. The results show that the MBRL method can learn the optimal control policy with fewer episodes.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the optimal control of the flotation industrial process (FIP) is studied. The flotation process uses differences in the physical and chemical properties of mineral surfaces to selectively attach minerals to air bubbles, and separate useful from useless minerals. To optimize control of the process, we use the model-based reinforcement learning (MBRL) method to design the optimal controller for the flotation process. A case study on the flotation mechanism model verifies the efficiency of the proposed method. The results show that the MBRL method can learn the optimal control policy with fewer episodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型强化学习的浮选工业过程最优控制
本文研究了浮选工业过程的最优控制问题。浮选过程利用矿物表面物理和化学性质的差异,选择性地将矿物附着在气泡上,并将有用的矿物与无用的矿物分离出来。为了优化浮选过程的控制,采用基于模型的强化学习(MBRL)方法设计浮选过程的最优控制器。通过浮选机理模型的实例研究,验证了该方法的有效性。结果表明,MBRL方法可以用更少的事件学习到最优控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Element Component Content Based on Mechanism Analysis and Error Compensation An Improved Genetic Algorithm for Solving Tri-level Programming Problems Dynamic multi-objective optimization algorithm based on weighted differential prediction model Quality defect analysis of injection molding based on gradient enhanced Kriging model Leader-Follower Consensus Control For Multi-Spacecraft With The Attitude Observers On SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1