Personalized Content-Based Music Retrieval by User-Filtering and Query-Refinement

Ja-Hwung Su, T. Hong, Jyun-Yu Li, Jung-Jui Su
{"title":"Personalized Content-Based Music Retrieval by User-Filtering and Query-Refinement","authors":"Ja-Hwung Su, T. Hong, Jyun-Yu Li, Jung-Jui Su","doi":"10.1109/TAAI.2018.00047","DOIUrl":null,"url":null,"abstract":"In recent years, music is an important media because it can relax us in our daily life. Therefore, most people listen to music frequently and current music websites offer online listening services. However, because the semantic gap, it is not easy to effectively retrieve the user preferred music especially from a huge amount of music data. For this issue, this paper presents a personalized content-based music retrieval system that integrates techniques of user-filtering and query-refinement to achieve high quality of music retrieval. In terms of user-filtering, the new user interest can be inferred by the user similarities. In terms of query-refinement, the user interest can be guided to the potential search space by iterative feedbacks. The experimental results show the proposed method does improve the retrieval quality significantly.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"351 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, music is an important media because it can relax us in our daily life. Therefore, most people listen to music frequently and current music websites offer online listening services. However, because the semantic gap, it is not easy to effectively retrieve the user preferred music especially from a huge amount of music data. For this issue, this paper presents a personalized content-based music retrieval system that integrates techniques of user-filtering and query-refinement to achieve high quality of music retrieval. In terms of user-filtering, the new user interest can be inferred by the user similarities. In terms of query-refinement, the user interest can be guided to the potential search space by iterative feedbacks. The experimental results show the proposed method does improve the retrieval quality significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于用户过滤和查询细化的个性化内容音乐检索
近年来,音乐是一个重要的媒体,因为它可以放松我们在我们的日常生活。因此,大多数人经常听音乐,现在的音乐网站提供在线听音乐服务。然而,由于语义差距的存在,很难有效地从海量的音乐数据中检索到用户喜欢的音乐。针对这一问题,本文提出了一个个性化的基于内容的音乐检索系统,该系统集成了用户过滤和查询细化技术,以实现高质量的音乐检索。在用户过滤方面,可以通过用户相似度来推断新用户的兴趣。在查询细化方面,可以通过迭代反馈将用户兴趣引导到潜在的搜索空间。实验结果表明,该方法显著提高了检索质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ant Colony Optimization with Negative Feedback for Solving Constraint Satisfaction Problems Using Machine Learning Algorithms in Medication for Cardiac Arrest Early Warning System Construction and Forecasting Using AHP to Choose the Best Logistics Distribution Model A Vector Mosquitoes Classification System Based on Edge Computing and Deep Learning Deep Recurrent Q-Network with Truncated History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1