Prediction of freeway self-driving traffic flow based on bidirectional GRU recurrent neural network

Yubo Deng, Yu Zhang, Haoyin Lv, Yezhou Yang, Yongchen Wang
{"title":"Prediction of freeway self-driving traffic flow based on bidirectional GRU recurrent neural network","authors":"Yubo Deng, Yu Zhang, Haoyin Lv, Yezhou Yang, Yongchen Wang","doi":"10.1109/cost57098.2022.00022","DOIUrl":null,"url":null,"abstract":"This paper uses the Bi-directional Gated Recurrent Unit(BI-GRU) recurrent neural network, combined with the historical data of the high-speed toll station entrances and exits at different time nodes on weekdays, weekends and holidays, to predict the traffic flow of vehicles entering the province and reaching key tourist cities, and realize the expressway in Gansu Province. It can be seen from the experimental results that in a larger time and space range, BI-GRU has improved prediction accuracy compared with standard Gated Recurrent Unit (GRU) and Long short-term memory (LSTM), and its prediction ability for data with large fluctuations and peak data is more prominent.","PeriodicalId":135595,"journal":{"name":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cost57098.2022.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper uses the Bi-directional Gated Recurrent Unit(BI-GRU) recurrent neural network, combined with the historical data of the high-speed toll station entrances and exits at different time nodes on weekdays, weekends and holidays, to predict the traffic flow of vehicles entering the province and reaching key tourist cities, and realize the expressway in Gansu Province. It can be seen from the experimental results that in a larger time and space range, BI-GRU has improved prediction accuracy compared with standard Gated Recurrent Unit (GRU) and Long short-term memory (LSTM), and its prediction ability for data with large fluctuations and peak data is more prominent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双向GRU递归神经网络的高速公路自动驾驶交通流预测
本文采用双向门控循环单元(BI-GRU)递归神经网络,结合平日、周末、节假日不同时间节点高速收费站出入口历史数据,预测车辆入省及到达重点旅游城市的交通流量,实现甘肃省高速公路的交通流量预测。从实验结果可以看出,在更大的时间和空间范围内,BI-GRU与标准门控循环单元(GRU)和长短期记忆(LSTM)相比,其预测精度有所提高,对波动较大的数据和峰值数据的预测能力更为突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Vision Enhancement Network for Image Quality Assessment Analysis and Application of Tourists’ Sentiment Based on Hotel Comment Data Automatic Image Generation of Peking Opera Face using StyleGAN2 Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN Performance comparison of deep learning methods on hand bone segmentation and bone age assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1