Adaptive Power Management in Energy Harvesting Systems

Clemens Moser, L. Thiele, D. Brunelli, L. Benini
{"title":"Adaptive Power Management in Energy Harvesting Systems","authors":"Clemens Moser, L. Thiele, D. Brunelli, L. Benini","doi":"10.1109/DATE.2007.364689","DOIUrl":null,"url":null,"abstract":"Recently, there has been a substantial interest in the design of systems that receive their energy from regenerative sources such as solar cells. In contrast to approaches that attempt to minimize the power consumption we are concerned with adapting parameters of the application such that a maximal utility is obtained while respecting the limited and time-varying amount of available energy. Instead of solving the optimization problem on-line which may be prohibitively complex in terms of running time and energy consumption, we propose a parameterized specification and the computation of a corresponding optimal on-line controller. The efficiency of the new approach is demonstrated by experimental results and measurements on a sensor node","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2007.364689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

Abstract

Recently, there has been a substantial interest in the design of systems that receive their energy from regenerative sources such as solar cells. In contrast to approaches that attempt to minimize the power consumption we are concerned with adapting parameters of the application such that a maximal utility is obtained while respecting the limited and time-varying amount of available energy. Instead of solving the optimization problem on-line which may be prohibitively complex in terms of running time and energy consumption, we propose a parameterized specification and the computation of a corresponding optimal on-line controller. The efficiency of the new approach is demonstrated by experimental results and measurements on a sensor node
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能量收集系统中的自适应电源管理
最近,人们对从太阳能电池等可再生能源中获取能量的系统设计产生了浓厚的兴趣。与试图最小化功耗的方法相反,我们关心的是调整应用的参数,以便在尊重有限的和随时间变化的可用能量的同时获得最大的效用。为了避免在线解决在运行时间和能量消耗方面可能过于复杂的优化问题,我们提出了一个参数化规范和相应的最优在线控制器的计算。实验结果和在传感器节点上的测量结果证明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization-based Wideband Basis Functions for Efficient Interconnect Extraction System Level Assessment of an Optical NoC in an MPSoC Platform Modeling and Simulation to the Design of ΣΔ Fractional-N Frequency Synthesizer Tool-support for the analysis of hybrid systems and models Development of an ASIP Enabling Flows in Ethernet Access Using a Retargetable Compilation Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1