Multiple Sclerosis Identification by Grey-Level Cooccurrence Matrix and Biogeography-Based Optimization

Qinghua Zhou, Xiaoqing Shen
{"title":"Multiple Sclerosis Identification by Grey-Level Cooccurrence Matrix and Biogeography-Based Optimization","authors":"Qinghua Zhou, Xiaoqing Shen","doi":"10.1109/ICDSP.2018.8631873","DOIUrl":null,"url":null,"abstract":"This paper presents a new method amongst developing computer vision algorithms for the detection of multiple sclerosis (MS). Lesions caused by MS are detectable on MRI images. CV algorithms present subjective approaches in detection. In this study, we used the grey-level co-occurrence matrix to extract detailed texture features from the spatial distribution of greytone on MRI images. Multi-layered feedforward neural network was used as the classifier. Then, we selected biogeography-based optimisation algorithm to train this classifier. Through cross-validation, the method achieved sensitivity, specificity and accuracy of 92.75±1.31%, 92.76±1.65%, and 92.75±1.43% respectively. We validated the efficiency of the classifier, but overall, the method is inferior to state-of-art algorithms of MS lesion detection in all aspects.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a new method amongst developing computer vision algorithms for the detection of multiple sclerosis (MS). Lesions caused by MS are detectable on MRI images. CV algorithms present subjective approaches in detection. In this study, we used the grey-level co-occurrence matrix to extract detailed texture features from the spatial distribution of greytone on MRI images. Multi-layered feedforward neural network was used as the classifier. Then, we selected biogeography-based optimisation algorithm to train this classifier. Through cross-validation, the method achieved sensitivity, specificity and accuracy of 92.75±1.31%, 92.76±1.65%, and 92.75±1.43% respectively. We validated the efficiency of the classifier, but overall, the method is inferior to state-of-art algorithms of MS lesion detection in all aspects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰色共生矩阵和生物地理优化的多发性硬化症识别
本文提出了一种用于多发性硬化症(MS)检测的计算机视觉算法。多发性硬化症引起的病变在MRI图像上可以检测到。CV算法在检测中呈现主观的方法。在本研究中,我们使用灰度共生矩阵从MRI图像的灰度空间分布中提取详细的纹理特征。采用多层前馈神经网络作为分类器。然后,我们选择了基于生物地理的优化算法来训练该分类器。经交叉验证,该方法的灵敏度为92.75±1.31%,特异度为92.76±1.65%,准确度为92.75±1.43%。我们验证了分类器的效率,但总的来说,该方法在各个方面都不如目前最先进的MS病变检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1