Multi-Step Ballistic Vehicle Trajectory Forecasting Using Deep Learning Models

Nikolai E. Gaiduchenko, P. Gritsyk, Y. Malashko
{"title":"Multi-Step Ballistic Vehicle Trajectory Forecasting Using Deep Learning Models","authors":"Nikolai E. Gaiduchenko, P. Gritsyk, Y. Malashko","doi":"10.1109/EnT50437.2020.9431287","DOIUrl":null,"url":null,"abstract":"This paper compares several deep learning models on the task of multi-step trajectory forecasting of a non-manoeuvring ballistic vehicle. We use state-of-the-art techniques to build and train LSTM, GRU, and Transformer architectures and test their performance versus the multi-layer perceptron baseline. The experiments on synthetic data show that, in our problem settings, trajectory forecasting is best performed with the LSTM network with a trainable initial state. Although the Transformer models were able to outperform the baseline, they could not outrun the recursive neural networks in terms of prediction errors.","PeriodicalId":129694,"journal":{"name":"2020 International Conference Engineering and Telecommunication (En&T)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Engineering and Telecommunication (En&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT50437.2020.9431287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper compares several deep learning models on the task of multi-step trajectory forecasting of a non-manoeuvring ballistic vehicle. We use state-of-the-art techniques to build and train LSTM, GRU, and Transformer architectures and test their performance versus the multi-layer perceptron baseline. The experiments on synthetic data show that, in our problem settings, trajectory forecasting is best performed with the LSTM network with a trainable initial state. Although the Transformer models were able to outperform the baseline, they could not outrun the recursive neural networks in terms of prediction errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习模型的多步弹道飞行器轨迹预测
本文比较了几种深度学习模型在非机动弹道飞行器多步轨迹预测任务中的应用。我们使用最先进的技术来构建和训练LSTM、GRU和Transformer架构,并测试它们与多层感知器基线的性能。在综合数据上的实验表明,在我们的问题设置中,具有可训练初始状态的LSTM网络的轨迹预测效果最好。尽管Transformer模型能够超越基线,但在预测误差方面,它们无法超越递归神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of Electrodynamic Parameters at Low Temperatures in the Frequency Range up to 18 GHz Circularly Polarized Multilayer Printed Radiator for Wide-Angle Scanning Ka-band Phased Array Adaptive Calibration Method for Time-Interleaved ADCs Cylindrical AESA of microstrip dipols for the ground communication system Enhanced Mixture Detectors for Spectrum Sensing in Cognitive Radio Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1