17x Reliability Enhanced LDPC Code with Burst-Error Masking and High-Precision LLR for Highly Reliable Solid-State-Drives with TLC NAND Flash Memory

Tsukasa Tokutomi, K. Takeuchi
{"title":"17x Reliability Enhanced LDPC Code with Burst-Error Masking and High-Precision LLR for Highly Reliable Solid-State-Drives with TLC NAND Flash Memory","authors":"Tsukasa Tokutomi, K. Takeuchi","doi":"10.1109/IMW.2016.7493561","DOIUrl":null,"url":null,"abstract":"Highly reliable LDPC ECC is introduced to improve the reliability of solid-state drives (SSDs). Although conventional AEP-LDPC ECC [3] is 12x highly reliable than BCH ECC, its error-correction capability is degraded due to the burst-errors and inaccurate log- likelihood ratio (LLR). To improve the reliability of TLC NAND flash, this paper proposes the burst-error masking (BEM) and program-disturb merged LLR estimation (PMLE). The first proposal, BEM eliminates the burst- errors by recording the error-location to the table. The second proposal, PMLE calculates the ratio of program-disturb errors to data-retention errors. As a result, more precise LLR is obtained. By combining BEM and PMLE, the SSD lifetime is extended by 17x and the table size overhead is reduced by 81%.","PeriodicalId":365759,"journal":{"name":"2016 IEEE 8th International Memory Workshop (IMW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 8th International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2016.7493561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Highly reliable LDPC ECC is introduced to improve the reliability of solid-state drives (SSDs). Although conventional AEP-LDPC ECC [3] is 12x highly reliable than BCH ECC, its error-correction capability is degraded due to the burst-errors and inaccurate log- likelihood ratio (LLR). To improve the reliability of TLC NAND flash, this paper proposes the burst-error masking (BEM) and program-disturb merged LLR estimation (PMLE). The first proposal, BEM eliminates the burst- errors by recording the error-location to the table. The second proposal, PMLE calculates the ratio of program-disturb errors to data-retention errors. As a result, more precise LLR is obtained. By combining BEM and PMLE, the SSD lifetime is extended by 17x and the table size overhead is reduced by 81%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
17x可靠性增强LDPC码与突发错误掩蔽和高精度LLR高可靠的固态驱动器与TLC NAND闪存
为提高固态硬盘的可靠性,提出了高可靠的LDPC ECC。虽然传统的AEP-LDPC ECC[3]的可靠性是BCH ECC的12倍,但由于突发误差和不准确的对数似然比(LLR),其纠错能力下降。为了提高TLC NAND闪存的可靠性,本文提出了突发错误掩蔽(BEM)和程序干扰合并LLR估计(PMLE)。第一种方案,BEM通过将错误位置记录到表中来消除突发错误。第二种方案,PMLE计算程序干扰错误与数据保留错误的比率。从而得到了更精确的LLR。通过结合BEM和PMLE, SSD的生命周期延长了17倍,表大小开销减少了81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
N-Doping Impact in Optimized Ge-Rich Materials Based Phase-Change Memory Threshold Switching in Amorphous Cr-Doped Vanadium Oxide for New Crossbar Selector Analytical Model to Evaluate the Role of Deep Trap State in the Reliability of NAND Flash Memory and Its Process Dependence Fully Analytical Compact Model of OxRAM Based on Joule Heating and Electromigration for DC and Pulsed Operation A Double-Data- Rate 2 (DDR2) Interface Phase-Change Memory with 533MB/s Read -Write Data Rate and 37.5ns Access Latency for Memory-Type Storage Class Memory Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1