{"title":"A Novel EBG Power Plane with Stopband Enhancement using Artificial Substrate","authors":"Ting-Kuang Wang, Tzu-Wei Han, Tzong-Lin Wu","doi":"10.1109/EPEP.2007.4387158","DOIUrl":null,"url":null,"abstract":"Based on the conventional low-period coplanar EBG (LPC-EBG) structure, a novel power plane is proposed to extend the bandwidth of the stopband for ground bounce elimination using artificial substrate EBG (AS-EBG) structure. With properly embedded high-K rods and air rods in the substrate of the LPC-EBG power plane, the resonance frequencies can be shifted and thus result in the enhancement of the first stopband. Over 60% improvement of the stopband bandwidth can be achieved in this work. This improvement is also verified by the dispersion diagram calculated using the 2-D transmission-line model.","PeriodicalId":402571,"journal":{"name":"2007 IEEE Electrical Performance of Electronic Packaging","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Electrical Performance of Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2007.4387158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Based on the conventional low-period coplanar EBG (LPC-EBG) structure, a novel power plane is proposed to extend the bandwidth of the stopband for ground bounce elimination using artificial substrate EBG (AS-EBG) structure. With properly embedded high-K rods and air rods in the substrate of the LPC-EBG power plane, the resonance frequencies can be shifted and thus result in the enhancement of the first stopband. Over 60% improvement of the stopband bandwidth can be achieved in this work. This improvement is also verified by the dispersion diagram calculated using the 2-D transmission-line model.