Shengnan Chen, Pingheng Wang, Mengyuan Zhou, Zirui Wang, Bin He
{"title":"A Comparative Analysis of Math Word Problem Solving on Characterized Datasets","authors":"Shengnan Chen, Pingheng Wang, Mengyuan Zhou, Zirui Wang, Bin He","doi":"10.1109/IEIR56323.2022.10050058","DOIUrl":null,"url":null,"abstract":"Benefit from the neural network research, a couple of neural solvers have been developed for automatically solving math word problems (MWPs). These neural solvers are evaluated on several benchmark datasets with diverse characteristics, which leads to a poor comparability of the performance of each solver. To address the problem, a comparative analysis is conducted in this paper to explore the performance variations of neural solvers in solving different characteristic MWPs. The architectures of the typical neural solvers are studied and a four-dimensional index model is proposed to characterize the benchmark dataset into different subsets. The experimental results show that the Seq2Seq-based model solvers perform well on most of the subsets, while Graph2Tree based solvers seem to have more potential in solving problems with complex expression structures.","PeriodicalId":183709,"journal":{"name":"2022 International Conference on Intelligent Education and Intelligent Research (IEIR)","volume":"53 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Education and Intelligent Research (IEIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEIR56323.2022.10050058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Benefit from the neural network research, a couple of neural solvers have been developed for automatically solving math word problems (MWPs). These neural solvers are evaluated on several benchmark datasets with diverse characteristics, which leads to a poor comparability of the performance of each solver. To address the problem, a comparative analysis is conducted in this paper to explore the performance variations of neural solvers in solving different characteristic MWPs. The architectures of the typical neural solvers are studied and a four-dimensional index model is proposed to characterize the benchmark dataset into different subsets. The experimental results show that the Seq2Seq-based model solvers perform well on most of the subsets, while Graph2Tree based solvers seem to have more potential in solving problems with complex expression structures.