Micro-hyperboloid lensed optical fibers for laser chip coupling

Szu-Chin Lei, Wen-Hsuan Hsieh, W. Cheng, Y. Tsai, Che-Hsin Lin
{"title":"Micro-hyperboloid lensed optical fibers for laser chip coupling","authors":"Szu-Chin Lei, Wen-Hsuan Hsieh, W. Cheng, Y. Tsai, Che-Hsin Lin","doi":"10.1109/NEMS.2016.7758223","DOIUrl":null,"url":null,"abstract":"This study develops a novel approach for producing hyperboloid microlens structure directly on a single-mode optical fiber for high performance diode laser coupling. The hyperboloid shape lensed tip is for matching with the rectangular output of the semiconductor laser diode. The hyperboloid lensed fiber is produced a three-step process including a precision mechanical grinding, a spin-on-glass (SOG) coating and an electrostatic pulling process. A flat-end single mode fiber with the core diameter of 6.6 μm is aligned, fixed and grinded into trapezoid shape. Trace amount of spin-on-glass is applied on the grinded tip and then an electrostatic pulling is used to tune the radius of curvature of around 4.5 μm for the grinded tip. A high coupling efficiency around 80% is obtained while using the produced hyperboloid fibers, which is about double compared to the coupling efficiency of the flat end fiber. The measured coupling stability for 5 individual hyperboloid fibers is 0.116±0.044%, indicating the good coupling stability for the produced hyperboloid microlensed fibers. The developed hyperboloid microlensed fibers provides a solution for direct light coupling between the single mold fiber and the semiconductor diode laser.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study develops a novel approach for producing hyperboloid microlens structure directly on a single-mode optical fiber for high performance diode laser coupling. The hyperboloid shape lensed tip is for matching with the rectangular output of the semiconductor laser diode. The hyperboloid lensed fiber is produced a three-step process including a precision mechanical grinding, a spin-on-glass (SOG) coating and an electrostatic pulling process. A flat-end single mode fiber with the core diameter of 6.6 μm is aligned, fixed and grinded into trapezoid shape. Trace amount of spin-on-glass is applied on the grinded tip and then an electrostatic pulling is used to tune the radius of curvature of around 4.5 μm for the grinded tip. A high coupling efficiency around 80% is obtained while using the produced hyperboloid fibers, which is about double compared to the coupling efficiency of the flat end fiber. The measured coupling stability for 5 individual hyperboloid fibers is 0.116±0.044%, indicating the good coupling stability for the produced hyperboloid microlensed fibers. The developed hyperboloid microlensed fibers provides a solution for direct light coupling between the single mold fiber and the semiconductor diode laser.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于激光芯片耦合的微双曲面透镜光纤
本研究提出了一种在单模光纤上直接制备双曲面微透镜结构的新方法,用于高性能二极管激光耦合。该双曲面透镜尖端用于与半导体激光二极管的矩形输出相匹配。双曲面透镜光纤的生产分为三个步骤,包括精密机械研磨、玻璃自旋涂层和静电拉拔工艺。将芯径为6.6 μm的平头单模光纤对准、固定、研磨成梯形。在磨尖上施加微量的玻璃自旋,然后利用静电拉力将磨尖的曲率半径调整为4.5 μm左右。所制备的双曲面光纤的耦合效率约为80%,是平端光纤耦合效率的两倍。实测的5条双曲面微透镜光纤的耦合稳定性为0.116±0.044%,表明所制备的双曲面微透镜光纤具有良好的耦合稳定性。所开发的双曲面微透镜光纤为单模光纤与半导体二极管激光器之间的直接光耦合提供了一种解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MEMS artificial neuromast arrays for hydrodynamic control of soft-robots In-situ cellular-scale injection for alive plants by micro-bubble injector High-throughput injection by circulating plasma-bubbles laden flows Development of a simple fabrication process for a printable piezoelectric energy harvest device A three-dimensional microfluidic device for oocyte zona-removal and incubation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1