A net for automatic detection of minimal correlation order in contextual pattern recognition

P. Castiglione, G. Basti, Stefano Fusi, G. Morgavi, A. Perrone
{"title":"A net for automatic detection of minimal correlation order in contextual pattern recognition","authors":"P. Castiglione, G. Basti, Stefano Fusi, G. Morgavi, A. Perrone","doi":"10.1109/IJCNN.1992.227213","DOIUrl":null,"url":null,"abstract":"The authors propose a neural net able to recognize input pattern sequences by memorizing only one of the transformed patterns, the prototype forming the sequence. This capacity depends on an automatic control of the minimal correlation order to perform recognition tasks and, in ambiguous cases, on a type of context-dependent memory recalling. The neural net model can use the noise constructively to modify continuously the learned prototype pattern in view of a contextual recognition of input pattern sequences. In such a way, the net is able to deduce, by itself, from the prototype pattern, the hypotheses by which it can recognize highly corrupted static patterns, or sequences of transformed patterns.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors propose a neural net able to recognize input pattern sequences by memorizing only one of the transformed patterns, the prototype forming the sequence. This capacity depends on an automatic control of the minimal correlation order to perform recognition tasks and, in ambiguous cases, on a type of context-dependent memory recalling. The neural net model can use the noise constructively to modify continuously the learned prototype pattern in view of a contextual recognition of input pattern sequences. In such a way, the net is able to deduce, by itself, from the prototype pattern, the hypotheses by which it can recognize highly corrupted static patterns, or sequences of transformed patterns.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上下文模式识别中最小相关顺序自动检测网络
作者提出了一种神经网络,能够通过记忆转换后的模式序列中的一个来识别输入模式序列,即形成该序列的原型。这种能力依赖于对最小相关顺序的自动控制来执行识别任务,在模糊的情况下,依赖于一种依赖于上下文的记忆回忆。基于对输入模式序列的上下文识别,该神经网络模型可以利用噪声建设性地对学习到的原型模式进行连续修改。通过这种方式,网络能够自己从原型模式中推断出假设,通过这些假设,它可以识别高度损坏的静态模式或转换模式的序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1