Mikhail E. Belkin, T. Bakhvalova, Vladislav Golovin, Y. Tyschuk, Alexander S. Sigov
{"title":"Modeling and Simulation in Microwave-Photonics Applications","authors":"Mikhail E. Belkin, T. Bakhvalova, Vladislav Golovin, Y. Tyschuk, Alexander S. Sigov","doi":"10.5772/intechopen.91940","DOIUrl":null,"url":null,"abstract":"In this chapter, with the goal to recover an optimal mean for computer-aided modeling and simulating a newer class of microwave-photonics-based radio electronic apparatuses, a number of comparative simulation experiments for the basic microwave band electronic devices and systems using well-known software tools referred to photonic design automation or upgraded electronic design automation platforms are carried out. As a result, it is shown that exploiting the software of upgraded electronic design automation platform provides significantly better accuracy of calculations for the devices and systems of this class.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling and Simulation in Engineering - Selected Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this chapter, with the goal to recover an optimal mean for computer-aided modeling and simulating a newer class of microwave-photonics-based radio electronic apparatuses, a number of comparative simulation experiments for the basic microwave band electronic devices and systems using well-known software tools referred to photonic design automation or upgraded electronic design automation platforms are carried out. As a result, it is shown that exploiting the software of upgraded electronic design automation platform provides significantly better accuracy of calculations for the devices and systems of this class.