Pub Date : 2020-10-06DOI: 10.5772/intechopen.93788
Dmytro V. Yevdokymov, Yuri L. Menshikov
Nowadays, diffusion and heat conduction processes in slow changing domains attract great attention. Slow-phase transitions and growth of biological structures can be considered as examples of such processes. The main difficulty in numerical solutions of correspondent problems is connected with the presence of two time scales. The first one is time scale describing diffusion or heat conduction. The second time scale is connected with the mentioned slow domain evolution. If there is sufficient difference in order of the listed time scale, strong computational difficulties in application of time-stepping algorithms are observed. To overcome the mentioned difficulties, it is proposed to apply a small parameter method for obtaining a new mathematical model, in which the starting parabolic initial-boundary-value problem is replaced by a sequence of elliptic boundary-value problems. Application of the boundary element method for numerical solution of the obtained sequence of problems gives an opportunity to solve the whole considered problem in slow time with high accuracy specific to the mentioned algorithm. Besides that, questions about convergence of the obtained asymptotic expansion and correspondence between initial and obtained formulations of the problem are considered separately. The proposed numerical approach is illustrated by several examples of numerical calculations for relevant problems.
{"title":"Mathematical Modelling and Numerical Simulation of Diffusive Processes in Slow Changing Domains","authors":"Dmytro V. Yevdokymov, Yuri L. Menshikov","doi":"10.5772/intechopen.93788","DOIUrl":"https://doi.org/10.5772/intechopen.93788","url":null,"abstract":"Nowadays, diffusion and heat conduction processes in slow changing domains attract great attention. Slow-phase transitions and growth of biological structures can be considered as examples of such processes. The main difficulty in numerical solutions of correspondent problems is connected with the presence of two time scales. The first one is time scale describing diffusion or heat conduction. The second time scale is connected with the mentioned slow domain evolution. If there is sufficient difference in order of the listed time scale, strong computational difficulties in application of time-stepping algorithms are observed. To overcome the mentioned difficulties, it is proposed to apply a small parameter method for obtaining a new mathematical model, in which the starting parabolic initial-boundary-value problem is replaced by a sequence of elliptic boundary-value problems. Application of the boundary element method for numerical solution of the obtained sequence of problems gives an opportunity to solve the whole considered problem in slow time with high accuracy specific to the mentioned algorithm. Besides that, questions about convergence of the obtained asymptotic expansion and correspondence between initial and obtained formulations of the problem are considered separately. The proposed numerical approach is illustrated by several examples of numerical calculations for relevant problems.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122805702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-21DOI: 10.5772/intechopen.92774
D. Munteanu, J. Autran
This work explores by numerical simulation the impact of high-energy atmospheric neutrons and their interactions with III–V binary compound semiconductors. The efforts have focused on eight III–V semiconductors: GaAs, AlAs, InP, InAs, GaSb, InSb, GaN, and GaP. For each material, extensive Geant4 numerical simulations have been performed considering a bulk target exposed to a neutron source emulating the atmospheric neutron spectrum at terrestrial level. Results emphasize in detail the reaction rates per type of reaction (elastic, inelastic, nonelastic) and offer a classification of all the neutron-induced secondary products as a function of their atomic number, kinetic energy, initial stopping power, and range. Implications for single-event effects (SEEs) are analyzed and discussed, notably in terms of energy and charge deposited in the bulk material and in the first nanometers of particle range with respect to the critical charge for modern complementary metal oxide semiconductor (CMOS) technologies.
{"title":"Interactions between Terrestrial Cosmic-Ray Neutrons and III–V Compound Semiconductors","authors":"D. Munteanu, J. Autran","doi":"10.5772/intechopen.92774","DOIUrl":"https://doi.org/10.5772/intechopen.92774","url":null,"abstract":"This work explores by numerical simulation the impact of high-energy atmospheric neutrons and their interactions with III–V binary compound semiconductors. The efforts have focused on eight III–V semiconductors: GaAs, AlAs, InP, InAs, GaSb, InSb, GaN, and GaP. For each material, extensive Geant4 numerical simulations have been performed considering a bulk target exposed to a neutron source emulating the atmospheric neutron spectrum at terrestrial level. Results emphasize in detail the reaction rates per type of reaction (elastic, inelastic, nonelastic) and offer a classification of all the neutron-induced secondary products as a function of their atomic number, kinetic energy, initial stopping power, and range. Implications for single-event effects (SEEs) are analyzed and discussed, notably in terms of energy and charge deposited in the bulk material and in the first nanometers of particle range with respect to the critical charge for modern complementary metal oxide semiconductor (CMOS) technologies.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130029670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-11DOI: 10.5772/intechopen.93137
A. Kapranova, D. Bahaeva, D. Stenko, I. Verloka, A. Lebedev, M. Tarshis
When describing the mechanics of the behavior of bulk materials during their mixing, a theoretical basis for the design of the specified equipment is formed. In recent years, the most well-known methods of modeling this process include the stochastic approach, in the framework of which models of the following types are actively developing: cell, managerial, with time series, energy, etc. Moreover, as a rule, predicting the quality of the finished mixture according to the selected criterion is achieved by using numerical calculation methods based on the generated cyber system. Of particular interest is the use of the energy method from the statistical mechanics of nonequilibrium processes due to the possibility of obtaining analytical simulation results. The paper describes the motion models of bulk components in rarefied flows, which are built on the basis of the energy method and take into account the main characteristics of the studied mixing process.
{"title":"Methods of Nonequilibrium Statistical Mechanics in Models for Mixing Bulk Components","authors":"A. Kapranova, D. Bahaeva, D. Stenko, I. Verloka, A. Lebedev, M. Tarshis","doi":"10.5772/intechopen.93137","DOIUrl":"https://doi.org/10.5772/intechopen.93137","url":null,"abstract":"When describing the mechanics of the behavior of bulk materials during their mixing, a theoretical basis for the design of the specified equipment is formed. In recent years, the most well-known methods of modeling this process include the stochastic approach, in the framework of which models of the following types are actively developing: cell, managerial, with time series, energy, etc. Moreover, as a rule, predicting the quality of the finished mixture according to the selected criterion is achieved by using numerical calculation methods based on the generated cyber system. Of particular interest is the use of the energy method from the statistical mechanics of nonequilibrium processes due to the possibility of obtaining analytical simulation results. The paper describes the motion models of bulk components in rarefied flows, which are built on the basis of the energy method and take into account the main characteristics of the studied mixing process.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132980468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-09DOI: 10.5772/intechopen.93177
N. Deliiski, L. Dzurenda, N. Tumbarkova
A two-dimensional mathematical model has been created, solved, and verified for the transient nonlinear heat conduction in logs during their thawing in an air environment. For the numerical solution of the model, an explicit form of the finite-difference method in the computing medium of Visual FORTRAN Professional has been used. The chapter presents solutions of the model and its validation towards own experimental studies. During the validation of the model, the inverse task of the heat transfer has been solved for the determination of the logs’ heat transfer coefficients in radial and longitudinal directions. This task has been solved also in regard to the logs’ surface temperature, which depends on the mentioned coefficients. The results from the experimental and simulative investigation of 2D nonstationary temperature distribution in the longitudinal section of poplar logs with a diameter of 0.24 m, length of 0.48 m, and an initial temperature of approximately –30°C during their many hours thawing in an air environment at room temperature are presented, visualized, and analyzed.
{"title":"Modeling of the Two-Dimensional Thawing of Logs in an Air Environment","authors":"N. Deliiski, L. Dzurenda, N. Tumbarkova","doi":"10.5772/intechopen.93177","DOIUrl":"https://doi.org/10.5772/intechopen.93177","url":null,"abstract":"A two-dimensional mathematical model has been created, solved, and verified for the transient nonlinear heat conduction in logs during their thawing in an air environment. For the numerical solution of the model, an explicit form of the finite-difference method in the computing medium of Visual FORTRAN Professional has been used. The chapter presents solutions of the model and its validation towards own experimental studies. During the validation of the model, the inverse task of the heat transfer has been solved for the determination of the logs’ heat transfer coefficients in radial and longitudinal directions. This task has been solved also in regard to the logs’ surface temperature, which depends on the mentioned coefficients. The results from the experimental and simulative investigation of 2D nonstationary temperature distribution in the longitudinal section of poplar logs with a diameter of 0.24 m, length of 0.48 m, and an initial temperature of approximately –30°C during their many hours thawing in an air environment at room temperature are presented, visualized, and analyzed.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129726836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-06DOI: 10.5772/intechopen.92180
T. Dally, Carola Bilgen, Marek Werner, K. Weinberg
Numerical techniques to simulate crack propagation can roughly be divided into sharp and diffuse interface methods. Two prominent approaches to quantitative dynamic fracture analysis are compared here. Specifically, an adaptive cohesive element technique and a phase-field fracture approach are applied to simulate Hopkinson bar experiments on the fracture toughness of high-performance concrete. The experimental results are validated numerically in the sense of an inverse analysis. Both methods allow predictive numerical simulations of crack growth with an a priori unknown path and determine the related material parameter in a quantitative manner. Reliability, precision, and numerical costs differ however.
{"title":"Cohesive Elements or Phase-Field Fracture: Which Method Is Better for Dynamic Fracture Analyses?","authors":"T. Dally, Carola Bilgen, Marek Werner, K. Weinberg","doi":"10.5772/intechopen.92180","DOIUrl":"https://doi.org/10.5772/intechopen.92180","url":null,"abstract":"Numerical techniques to simulate crack propagation can roughly be divided into sharp and diffuse interface methods. Two prominent approaches to quantitative dynamic fracture analysis are compared here. Specifically, an adaptive cohesive element technique and a phase-field fracture approach are applied to simulate Hopkinson bar experiments on the fracture toughness of high-performance concrete. The experimental results are validated numerically in the sense of an inverse analysis. Both methods allow predictive numerical simulations of crack growth with an a priori unknown path and determine the related material parameter in a quantitative manner. Reliability, precision, and numerical costs differ however.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126756869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-29DOI: 10.5772/intechopen.92037
S. Shamsir, Sakib Hasan, Omiya Hassan, P. Paul, Razuan Hossain, S. K. Islam
This chapter covers different methods of semiconductor device modeling for electronic circuit simulation. It presents a discussion on physics-based analytical modeling approach to predict device operation at specific conditions such as applied bias (e.g., voltages and currents); environment (e.g., temperature, noise); and physical characteristics (e.g., geometry, doping levels). However, formulation of device model involves trade-off between accuracy and computational speed and for most practical operation such as for SPICE-based circuit simulator, empirical modeling approach is often preferred. Thus, this chapter also covers empirical modeling approaches to predict device operation by implementing mathematically fitted equations. In addition, it includes numerical device modeling approaches, which involve numerical device simulation using different types of commercial computer-based tools. Numerical models are used as virtual environment for device optimization under different conditions and the results can be used to validate the simulation models for other operating conditions.
{"title":"Semiconductor Device Modeling and Simulation for Electronic Circuit Design","authors":"S. Shamsir, Sakib Hasan, Omiya Hassan, P. Paul, Razuan Hossain, S. K. Islam","doi":"10.5772/intechopen.92037","DOIUrl":"https://doi.org/10.5772/intechopen.92037","url":null,"abstract":"This chapter covers different methods of semiconductor device modeling for electronic circuit simulation. It presents a discussion on physics-based analytical modeling approach to predict device operation at specific conditions such as applied bias (e.g., voltages and currents); environment (e.g., temperature, noise); and physical characteristics (e.g., geometry, doping levels). However, formulation of device model involves trade-off between accuracy and computational speed and for most practical operation such as for SPICE-based circuit simulator, empirical modeling approach is often preferred. Thus, this chapter also covers empirical modeling approaches to predict device operation by implementing mathematically fitted equations. In addition, it includes numerical device modeling approaches, which involve numerical device simulation using different types of commercial computer-based tools. Numerical models are used as virtual environment for device optimization under different conditions and the results can be used to validate the simulation models for other operating conditions.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126351802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-16DOI: 10.5772/intechopen.92044
S. Altaf, Shafiq Ahmad
The machinery arrangements in industrial environment normally consist of motors of diverse sizes and specifications that are provided power and connected with common power-bus. The power-line could be act as a good source for travelling the signal through power-line network and this can be leave a faulty symptom while inspection of motors. This influence on other neighbouring motors with noisy signal that may present some type of fault condition in healthy motors. Further intricacy arises when this type of signal is propagated on power-line network by motors at different slip speeds, power rating and many faulty motors within the network. This sort of convolution and diversification of signals from multiple motors makes it challenging to measure and accurately relate to a certain motor or specific fault. This chapter presents a critical literature review analysis on machine-fault diagnosis and its related topics. The review covers a wide range of recent literature in this problem domain. A significant related research development and contribution of different areas regarding fault diagnosis and traceability within power-line networks will be discussed in detail throughout this chapter.
{"title":"Machine Health Monitoring and Fault Diagnosis Techniques Review in Industrial Power-Line Network","authors":"S. Altaf, Shafiq Ahmad","doi":"10.5772/intechopen.92044","DOIUrl":"https://doi.org/10.5772/intechopen.92044","url":null,"abstract":"The machinery arrangements in industrial environment normally consist of motors of diverse sizes and specifications that are provided power and connected with common power-bus. The power-line could be act as a good source for travelling the signal through power-line network and this can be leave a faulty symptom while inspection of motors. This influence on other neighbouring motors with noisy signal that may present some type of fault condition in healthy motors. Further intricacy arises when this type of signal is propagated on power-line network by motors at different slip speeds, power rating and many faulty motors within the network. This sort of convolution and diversification of signals from multiple motors makes it challenging to measure and accurately relate to a certain motor or specific fault. This chapter presents a critical literature review analysis on machine-fault diagnosis and its related topics. The review covers a wide range of recent literature in this problem domain. A significant related research development and contribution of different areas regarding fault diagnosis and traceability within power-line networks will be discussed in detail throughout this chapter.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129937408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-15DOI: 10.5772/intechopen.91940
Mikhail E. Belkin, T. Bakhvalova, Vladislav Golovin, Y. Tyschuk, Alexander S. Sigov
In this chapter, with the goal to recover an optimal mean for computer-aided modeling and simulating a newer class of microwave-photonics-based radio electronic apparatuses, a number of comparative simulation experiments for the basic microwave band electronic devices and systems using well-known software tools referred to photonic design automation or upgraded electronic design automation platforms are carried out. As a result, it is shown that exploiting the software of upgraded electronic design automation platform provides significantly better accuracy of calculations for the devices and systems of this class.
{"title":"Modeling and Simulation in Microwave-Photonics Applications","authors":"Mikhail E. Belkin, T. Bakhvalova, Vladislav Golovin, Y. Tyschuk, Alexander S. Sigov","doi":"10.5772/intechopen.91940","DOIUrl":"https://doi.org/10.5772/intechopen.91940","url":null,"abstract":"In this chapter, with the goal to recover an optimal mean for computer-aided modeling and simulating a newer class of microwave-photonics-based radio electronic apparatuses, a number of comparative simulation experiments for the basic microwave band electronic devices and systems using well-known software tools referred to photonic design automation or upgraded electronic design automation platforms are carried out. As a result, it is shown that exploiting the software of upgraded electronic design automation platform provides significantly better accuracy of calculations for the devices and systems of this class.","PeriodicalId":259279,"journal":{"name":"Modeling and Simulation in Engineering - Selected Problems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126826331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}