Compressed sensing of ECG bio-signals using one-bit measurement matrices

Emily G. Allstot, Andrew Y. Chen, Anna M. R. Dixon, Daibashish Gangopadhyay, Heather Mitsuda, D. Allstot
{"title":"Compressed sensing of ECG bio-signals using one-bit measurement matrices","authors":"Emily G. Allstot, Andrew Y. Chen, Anna M. R. Dixon, Daibashish Gangopadhyay, Heather Mitsuda, D. Allstot","doi":"10.1109/NEWCAS.2011.5981293","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS) is an emerging signal processing technique that enables sub-Nyquist sampling of sparse signals such as electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) bio-signals. Future CS signal processing systems will exploit significant time- and/or frequency-domain sparsity to achieve ultra-low-power bio-signal acquisition in the analog, digital, or mixed-signal domains. A measurement matrix of random values is key to one form of CS computation. It has been shown for ECG and EMG signals that signal-to-quantization noise ratios (SQNR) > 60 dB with compression factors up to 16X are achievable using uniform or Gaussian 6-bit random coefficients. In this paper, 1-bit random coefficients are shown also to give compression factors up to 16X with similar SQNR performance. This approach reduces hardware and saves energy concomitant with 1-bit versus 6-bit signal processing.","PeriodicalId":271676,"journal":{"name":"2011 IEEE 9th International New Circuits and systems conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th International New Circuits and systems conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2011.5981293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Compressed sensing (CS) is an emerging signal processing technique that enables sub-Nyquist sampling of sparse signals such as electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) bio-signals. Future CS signal processing systems will exploit significant time- and/or frequency-domain sparsity to achieve ultra-low-power bio-signal acquisition in the analog, digital, or mixed-signal domains. A measurement matrix of random values is key to one form of CS computation. It has been shown for ECG and EMG signals that signal-to-quantization noise ratios (SQNR) > 60 dB with compression factors up to 16X are achievable using uniform or Gaussian 6-bit random coefficients. In this paper, 1-bit random coefficients are shown also to give compression factors up to 16X with similar SQNR performance. This approach reduces hardware and saves energy concomitant with 1-bit versus 6-bit signal processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于1位测量矩阵的心电生物信号压缩感知
压缩感知(CS)是一种新兴的信号处理技术,可以对稀疏信号进行亚奈奎斯特采样,如心电图(ECG)、肌电图(EMG)和脑电图(EEG)生物信号。未来的CS信号处理系统将利用显著的时域和/或频域稀疏性来实现模拟、数字或混合信号域的超低功耗生物信号采集。随机值的测量矩阵是一种CS计算形式的关键。研究表明,使用均匀或高斯6位随机系数可以实现ECG和EMG信号的信号量化噪声比(SQNR) > 60 dB,压缩系数高达16倍。在本文中,还显示了1位随机系数,可以提供高达16倍的压缩因子,具有类似的SQNR性能。这种方法减少了硬件,节省了1位信号处理和6位信号处理的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-power high-speed capacitive transdermal Spatial Pulse Position Modulation communication A high-speed, low input current CMOS integrated front end for multi-spectral photodiode arrays A level shifter circuit design by using input/output voltage monitoring technique for ultra-low voltage digital CMOS LSIs A current-mode back-end for a sensor microsystem A two-dimensional logarithmic number system (2DLNS)-based Finite Impulse Response (FIR) filter design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1