{"title":"Low-power high-speed capacitive transdermal Spatial Pulse Position Modulation communication","authors":"G. Simard, M. Sawan, D. Massicotte","doi":"10.1109/NEWCAS.2011.5981232","DOIUrl":null,"url":null,"abstract":"Neural recording or neural stimulating biomedical implants require a low-power high-speed communication link. We propose a novel modulation scheme for biomedical implants based on Spatial Pulse Position Modulation (SPPM). The principle of this new modulation scheme is presented, a system is developed up to post-layout simulation and is shown to perform up to 200 Mbps using only 750 μW at the transmitter side (3.75 pJ/bit) and 253 μW at the receiver side. The possibility of naturally combining a Viterbi encoder to the system is evoked, and important circuits stemming from the SPPM concept are briefly presented, such as a new receiver topology, based on a resistive bridge and two comparators.","PeriodicalId":271676,"journal":{"name":"2011 IEEE 9th International New Circuits and systems conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th International New Circuits and systems conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2011.5981232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Neural recording or neural stimulating biomedical implants require a low-power high-speed communication link. We propose a novel modulation scheme for biomedical implants based on Spatial Pulse Position Modulation (SPPM). The principle of this new modulation scheme is presented, a system is developed up to post-layout simulation and is shown to perform up to 200 Mbps using only 750 μW at the transmitter side (3.75 pJ/bit) and 253 μW at the receiver side. The possibility of naturally combining a Viterbi encoder to the system is evoked, and important circuits stemming from the SPPM concept are briefly presented, such as a new receiver topology, based on a resistive bridge and two comparators.