Pedestrian detection based on adaboost algorithm with a pseudo-calibrated camera

Damien Simonnet, S. Velastín
{"title":"Pedestrian detection based on adaboost algorithm with a pseudo-calibrated camera","authors":"Damien Simonnet, S. Velastín","doi":"10.1109/IPTA.2010.5586744","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for pedestrian detection for a fixed camera using the cluster boosted tree (CBT) structure of Wu and Nevatia for building a multi-view tree classifier based on edgelet features. The main advantage of this structure is that it is less sensitive to camera view changes compared to the cascade structure of Viola and Jones. The approach presented in this paper uses geometrical information in the image to estimate pedestrian size for a given pixel position. This we call pseudo camera calibration. Thereby, we combine the CBT classifier trained on the INRIA datasets and the pedestrian size estimator to detect pedestrians. The performance of this algorithm is also evaluated on images captured at a real metro station for several camera positions.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a new algorithm for pedestrian detection for a fixed camera using the cluster boosted tree (CBT) structure of Wu and Nevatia for building a multi-view tree classifier based on edgelet features. The main advantage of this structure is that it is less sensitive to camera view changes compared to the cascade structure of Viola and Jones. The approach presented in this paper uses geometrical information in the image to estimate pedestrian size for a given pixel position. This we call pseudo camera calibration. Thereby, we combine the CBT classifier trained on the INRIA datasets and the pedestrian size estimator to detect pedestrians. The performance of this algorithm is also evaluated on images captured at a real metro station for several camera positions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于adaboost算法的伪标定相机行人检测
本文提出了一种新的固定摄像机行人检测算法,利用Wu和Nevatia的聚类提升树(CBT)结构构建基于边缘特征的多视图树分类器。这种结构的主要优点是,与Viola和Jones的级联结构相比,它对相机视图的变化不太敏感。本文提出的方法使用图像中的几何信息来估计给定像素位置的行人大小。我们称之为伪摄像机校准。因此,我们将在INRIA数据集上训练的CBT分类器与行人大小估计器相结合来检测行人。本文还对在实际地铁车站拍摄的多个摄像机位置图像进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1